

Project funded by the European Union

Project: Resources pilot centre for cross-border preservation of the aquatic biodiversity of Prut River MIS ETC 1150

THE FOURTH REPORT, MAY 2012 – AUGUST 2013

Partner 1 - Institute of Zoology, Academy of Sciences of Moldova

Responsible for researcher's investigation Prof. dr.hab. *Elena ZUBCOV*

Head of the Laboratory Hydrobiology and Ecotoxicology Email: <u>ecotox@yahoo.com</u> Tel/Fax +373 22 73 75 09

GA4: PRUT RIVER INVESTIGATION

D1. Site hydrobiological study (including fish sampling) performed across and alongside Prut River from the entry into the Romanian territory to the confluence with Danube River

Investigations were carried out in the Institute of Zoology of the Academy of Sciences of Moldova.

The water and biological samples were collected in June, August, October and December of 2012 and in February, March, April, May, June, July and August of 2013. A range of samples collected in August of 2013 are currently under processing, because of this the corresponding results will be presented in the next report. As rule, the sampling was performed in Costesti-Stinca reservoir (lower sector, straight next to the dam), and the Prut River (Braniste, Sculeni, Leuseni, Leova, Cahul, Cislita-Prut, Giurgiulesti) with two exceptions: 1) in December of 2012, when the samples were picked up only in Costesti-Stinca reservoir (middle and lower sectors) and 2) in July 2013, when the samples were picked up in Middle Prut (Criva, Tetcani), Costesti-Stinca reservoir (Badragii Noi –upper, Duruitoarea Noua - middle, Costesti- lower sectors), and Lower Prut (Braniste, Sculeni, Leuseni, Leova, Cahul, Cislita-Prut, Giurgiulesti).

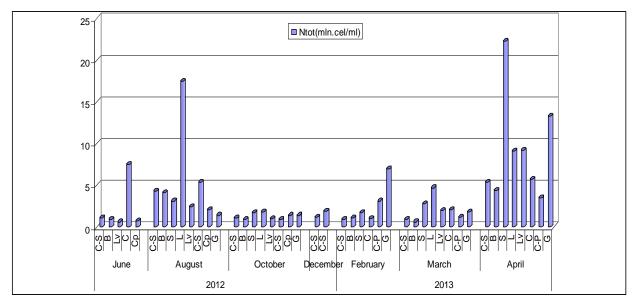
Investigations were directed both to the assessment of diversity, quantitative structure and production peculiarities of bacterio-, phyto- and zooplankton, zoobenthos, ichthyofauna and hydrochemical state of the Prut River. According to obtained results, the trophic statute and water quality of the Prut River were identified.

D.1.1 The monitoring of the structural and functional characteristics of the main aquatic organisms communities inhabiting the River Prut

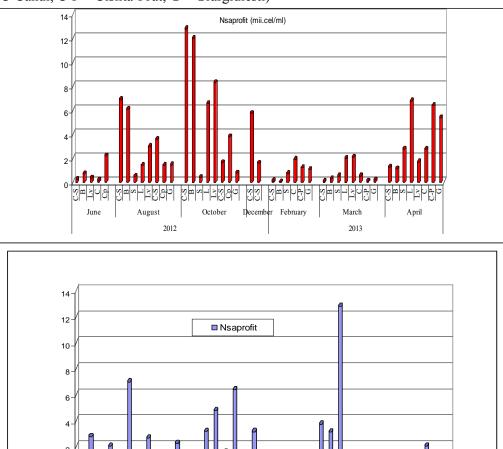
Bacterioplankton. The results of investigations proved that the diversity of functional bacterioplankton is rich in the Costesti-Stinca reservoir and Prut River. The following groups of bacteria were identified: nitrogen fixing bacteria (aerobic and anaerobic), ammonifying, nitrifying, denitrifying, phosphate mineralizing, amylolytic, cellulosolytic, phenolytic and petrolytic bacteria (Table 1).

Teservoir, June 201	2 Mugust				1		1	1	
	Ammo-	Denitri-	Nitrify-	Phos-	Amylo-	Cellulo-	Phenoly-	Petroly-	
	nifying	fying	ing	phate-	lytic	solytic	tic	tic	
	bacteria	bacteria	bacteria	minera-	bacteria	bacteria	bacteria	bacteria	
Station				lizing					
				bacteria					
	June 2012								
Costesti-Stinca	0.20	0.050	0.003	0.250	0.150	0.002	0.59	0.60	
Braniste	0.64	0.080	0.005	0.350	1.600	0.006	1.00	1.50	
Leova	0.390	0.070	0.008	0.200	0.600	0.003	0.700	1.800	
Cahul	0.40	0.100	0.002	0.110	0.550	0.002	0.610	1.500	
Cislita-Prut	1.10	1.50	0.004	0.40	4.0	0.004	1.20	2.0	
			Au	gust 2012					
Costesti-Stinca	3.20	0.50	0.01	0.070	0.980	0.025	0.600	1.90	
Braniste	3.00	0.30	0.009	0.020	0.900	0.02	1.000	1.30	
Sculeni	0.20	1.00	0.002	0.090	0.600	0.015	0.808	1.000	
Leuseni	2.160	0.300	0.003	0.080	0.360	0.01	0.700	0.960	
Leova	2.200	0.400	0.001	0.300	1.000	0.018	0.500	1.100	
Cahul	1.800	0.450	0.007	0.200	2.480	0.027	1.000	2.500	
Cislita-Prut	1.200	0.380	0.006	0.095	0.900	0.018	0.900	2.00	

Table 1 The density of main physiological groups of microorganisms in the Prut River and Costesti-Stinca reservoir, June 2012 – August 2013, thousand cells/ml


Giurgiulesti	1.00	0.390	0.005	0.097	0.950	0.019	0.800	1.800
				ober 2012				
Costesti-Stinca	3	0.005	0.015	0.02	1.2	0.014	0.79	7
Braniste	6	0.01	0.013	0.05	2.5	0.013	1.2	6.5
Sculeni	0.2	0.032	0.003	0.009	0.05	0.002	0.9	1
Leuseni	1.5	0.002	0.01	0.1	1.5	0.01	0.8	3
Leova	8	0.019	0.012	0.25	1.8	0.008	0.6	3.8
Cahul	0.6	0.01	0.008	0.05	1.3	0.009	1.3	3.5
Cislita-Prut	2.2	0.03	0.009	0.14	2	0.01	1.1	4.2
Giurgiulesti	0.7	0.02	0.005	0.03	0.5	0.004	1	5
<u>8</u> 8				ember 2012				-
Costesti-Stinca,								
middle sector	1	0.004	0.0002	0.075	2.5	0.001	0.05	0.5
Costesti-Stinca,	-	0.001	0.0002	0.070	2.0	0.001	0.00	0.0
lower sector	0.5	0.002	0.0002	0.05	0.8	0.001	0.02	0.2
				ruary 2013				
Costesti-Stinca,	0.07	0.000			0.065		0.005	0.012
lower sector	0.06	0.032	0.0002	0.025	0.065	-	0.005	0.013
Braniste	0.035	0.01	0.0003	0.005	0.05	-	0.003	0
Sculeni	0.22	0.07	0.0005	0.058	0.24	-	0.004	0.15
Cahul	0.64	0.56	0.005	0.005	0.32	-	0.06	0.01
Cislita-Prut	0.32	0.28	0.003	0.03	0.3	-	0.055	0.002
Giurgiulesti	0.36	0.16	0.004	0.02	0.45	_	0.078	0.005
	0.50	0.10		arch 2013	0.10		0.070	0.000
Costesti-Stinca,								
lower sector	0.015	0.007	0.0003	0.028	0.01	-	-	0.003
Braniste	0.08	0.045	0.0005	0.04	0.02	0.001	0.01	0.045
Sculeni	0.45	0.12	0.001	0.08	0.1	0.003	0.013	0.015
Leuseni	0.7	0.12	0.005	0.504	1.76	0.004	0.041	0.8
Leova	0.8	0.16	0.004	0.18	0.65	0.007	0.05	0.08
Cahul	0.5	0.18	0.004	0.24	0.24	0.008	0.09	0.1
Cislita-Prut	0.2	0.005	0.003	0.12	0.1	0.006	0.018	0.05
Giurgiulesti	0.3	0.24	0.005	0.12	0.08	0.005	0.019	0.055
	0.5	0.21		oril 2013	0.00	0.000	0.019	0.000
Costesti-Stinca,								
lower sector	0.3	0.136	0.0003	0.16	0.56	0.0005	0.1	0.45
Braniste	0.31	0.11	0.0004	0.15	0.44	0.0005	0.2	0.4
Sculeni	0.5	0.15	0.0005	0.28	0.5	0.001	0.4	0.48
Leuseni	4	0.56	0.0006	0.36	0.88	0.002	0.8	0.35
Leova	0.56	0.2	0.0007	0.165	0.6	0.0006	0.15	0.72
Cahul	0.64	0.36	0.0009	0.34	0.64	0.0005	0.25	1.65
Cislita-Prut	0.32	0.44	0.0008	0.5	1.3	0.0004	0.5	0.4
Giurgiulesti	0.4	0.3	0.0005	0.28	0.5	0.0007	0.7	0.5
	0	0.0	May 20		0.0	0.0007	017	0.0
Costesti-Stinca,			10149 20	10				
lower sector	0.25	0.001	0.0001	0.02	0.7	0.001	0.007	0.4
Braniste	1.25	0.001	0.0001	0.02	6.4	0.001	0.15	0.4
Sculeni	1.23	0.28	0.0003	0.2	2.4	0.001	0.01	0.6
Leuseni	2.4	0.15	0.001	0.3	2.6	0.002	0.045	0.066
Leova	2.4	0.13	0.001	0.25	1.88	0.004	0.035	0.000
Cahul	3	0.35	0.001	0.23	5	0.000	0.05	1.45
Cislita-Prut	1	0.14	0.0007	0.24	2	0.007	0.03	0.8
Giurgiulesti	2	0.14	0.0009	0.24	2.5	0.003	0.03	0.8
StarBraiosti		0.10		ine 2013	2.3	0.01	0.00	0.7
L			Jt					

Costesti-Stinca,								
lower sector	0.7	0.13	0.005	1	0.64	0.002	0.12	0.5
Braniste	0.9	0.15	0.003	1.2	0.8	0.002	0.12	0.58
Sculeni	0.8	0.15	0.002	0.86	0.0	0.006	0.05	0.62
Leuseni	2	0.4	0.002	1.6	1.2	0.009	0.038	0.5
Leova	1.6	0.65	0.001	1.0	2.8	0.01	0.055	0.85
Cahul	1.8	1	0.001	1.2	3	0.012	0.03	1
Cislita-Prut	1.5	2	0.001	1	1.1	0.005	0.01	0.7
Giurgiulesti	1.6	3	0.006	2.8	3.5	0.015	0.32	1.9
	1.0	5		aly 2013	5.5	0.010	0.52	1.5
Criva (Prut River)	2.6	0.6	0.0001	0.08	1.2	0.012	0.4	0.7
Tetcani (Prut								
River)	1	0.3	0.0002	0.1	1	0.01	0.35	0.6
Badrajii Noi								
(Costesti-Stinca,								
upper sector)	0.8	0.28	0.005	0.15	0.8	0.01	0.34	0.51
Duruitoarea Noua								
(Costesti-Stinca,								
middle sector)	0.6	0.2	0.045	0.11	0.44	0.002	0.19	0.4
Costesti-Stinca,								
lower sector	0.8	0.28	0.047	0.12	0.67	0.007	0.18	0.8
Braniste	1.5	0.11	0.003	0.6	0.6	0.004	0.2	1.2
Sculeni	1.8	0.2	0.035	0.12	0.5	0.003	0.1	1.1
Leuseni	3	1	0.0002	0.13	1.1	0.007	0.09	0.95
Leova	1.9	0.55	0.0004	0.32	1	0.005	0.095	1.5
Cahul	10	4	0.0003	0.95	5	0.03	0.26	1.9
Cislita-Prut	1.8	0.5	0.001	0.6	1.2	0.01	1	2.2
Giurgiulesti	1	0.35	0.002	0.55	1	0.009	0.9	2.5
			Auç	gust 2013				
Costesti-Stinca,								
lower sector	0,6	0,7	0,040	0,01	0,23	0,006	0,08	0,15
Braniste	1,1	0,9	0,02	0,02	0,85	0,005	0,25	0,60
Sculeni	1,0	1,0	0,012	0,07	0,55	0,003	0,01	0,010
Leuseni	0,6	0,8	0,009	1,0	0,25	0,001	0,030	0,3
Leova	0,5	1,2	0,01	0,4	1,37	0,004	0,070	0,07
Cahul	2,5	1,7	0,008	0,5	0,9	0,025	0,050	0,05
Cislita-Prut	1,88	0,8	0,007	1,0	0,62	0,015	0,20	0,3
Giurgiulesti	0,7	0,5	0,006	0,04	0,35	0,010	0,03	0,25


The results on the density of total bacterioplankton varied in the wide limits- from 0.6 to 22.3 million cells/ml (Fig.1). It is worth to mention that, from the microbiological point of view, the most loaded was Leuseni station (17.5 million cells/ml) in August of 2012 and Sculeni (22.3 million cells/ml) in April of 2013.

Bacterioplankton production oscillated in large diapason- from 0.01 cal/l in 24 hours (Leuseni) to 5.39 cal/l in 24 hours (Braniste, June 2012).

Saprophytic bacteria are a group of heterotrophic bacteria, actively participating to the destruction of easily degradable organic substances. As rule, their number has increased during the summer. Regarding on the quantitative development of saprophytic bacteria in the Prut River, it was revealed that their number is extremely variable, reaching values between 0.036 and 12.80 thousand cells/ml. The highest quantities were registered next to the Costesti dam and at Braniste station in August and October of 2012, at Leova station in October of 2012, at Leova station in October of 2012, at Leova station in April of 2013 (Fig.2).

Fig.1 Dynamics of bacteria density (million cells/ml) in the waters of Costesti-Stinca reservoir and the Prut River, June of 2012 – April of 2013 (C-S –Costesti-Stinca; Prut River: B-Braniste, S- Sculeni, L- Leuseni, Lv- Leova, C-Cahul, C-P – Cislita-Prut, G – Giurgiulesti)

Fig.2 Dynamics of saprophytic bacteria (thousand cells/ml) in the waters Costesti-Stinca reservoir, (superior (C-Ss) middle sector (C-Sm), next to the dam (C-S), and in the Prut River (Cr-Criva, T-Titcani, B-Braniste, S-Sculeni, L-Leuseni, Lv-Leova, C-Cahul, C-P-Cislita-Prut, G-Giurgiulesti), August- December of 2012, February-April of 2013, and May-August of 2013

June

May

Si

July

August

The self-cleaning potential of the Prut River water is high, this fact being demonstrated by density of ammonifying bacteria increased up to 8.0 thousand cells/ml, amylolytic bacteria- up to 4.0 thousand cells/ml and denitrifying bacteria- up to 1.5 thousand cells/ml (Table 1).

Investigation of microorganisms participating to the degradation of toxic compounds (phenols) and heavy biodegradable compounds (petroleum products) allowed stating that these groups of bacteria are well quantitatively represented. The density of phenolytic bacteria varied from 0.003 thousand cells/ml to 1.3 thousand cells/ml and the density of petrolytic bacteria - from 0 to 7.0 thousand cells/ml (Table 1). These figures indirectly denote that studied aquatic ecosystems are polluted by phenols and especially, by petroleum products.

According to the results of bacterioplankton investigation, the water quality varied within limits "low- polluted" - "very polluted".

Phytoplankton. In summer time of 2012, in the phytoplankton composition were identified 56 species and intraspecific taxa of planktonic algae, which refer to 6 phyla: *Cyanophyta* – 6, *Chrysophyta* -1, *Dinophyta* – 1, *Bacillariophyta* – 24, *Euglenophyta* – 4, *Chlorophyta* – 20. The most frequent were the following species: *Merismopedia tenuissima, Monoraphidium contortum, Monoraphidium komarkovae, Scenedesmus quadricauda, Trachelomonas hispida, Chlamydomonas globosa, Navicula cryptocephala, Cocconeis placentula, Nitzschia acicularis, and Cyclotella kuetzingiana*. Dinophyte algae, mainly represented by the species *Ceratium hirundinella*, were indentified only in the lower sector of the Costesti-Stinca reservoir, revealing a biomass of 4.37 g/m³. High values of phytoplankton density in the lower sector of river are due to intense development of cyanophyte algae at the stations Leova (22.4 million cells/l) (Fig.3).

Investigations of autumn of 2012 revealed 49 species and intraspecific taxa of planktonic algae, which refer to 5 phyla (*Cyanophyta* – 7, *Bacillariophyta* – 20, Xanthophyta-1, *Euglenophyta* – 2, *Chlorophyta* – 19) in the composition of the Prut River phytoplankton. The list of the most frequent registered species is comprised by *Synechocystis aquatilis* Sanv., *Merismopedia tenuissima* Lemm., *Oscillatoria lacustris* (Kleb.) Geitl., *Oscillatoria planctonica* Wolosz., *Scenedesmus quadricauda* Turp. var. quadricauda, Diatoma vulgare Bory var.vulgare.

In the middle sector of the Prut River, in autumn period, the phytoplankton was represented basically by *Cyanophyta* and *Bacillariophyta* algae; the density ranged 2.16-9.23 million cells/l, and the biomass- 1.15-1.24 g/m³. At the Braniste station the phytoplankton was more abundant, being significantly influenced by the penetration of species (*Synechocystis aquatilis* Sanv., *Oscillatoria lacustris* (Kleb.) Geitl.) from the lower sector of the Costesti-Stinca reservoir. In the lower sector of the Prut River the density values ranged between 2.43-24.96 million cells/l and of biomass-between 1.30-5.34 g/m³. The values of quantitative parameters of phytoplankton were relatively higher in the sector Leuseni-Cahul (12.06-24.96 million cells/l, 3.29-5.34 g/m³), being dominated by species *Synechocystis aquatilis* Sanv., *Merismopedia tenuissima* Lemm., *Oscillatoria lacustris* (Kleb.) Geitl., *Oscillatoria planctonica* Wolosz., *Scenedesmus quadricauda* Turp. *var. quadricauda*, and considerably decreased in the sector Cislita-Prut- Giurgiulesti (2.43-2.79 million cells/l, 1.30-2.12 g/m³).

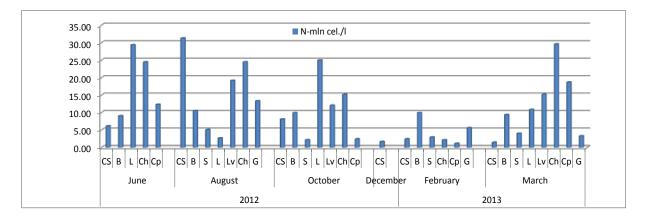
Phytoplankton of lower sector of Costesti-Stinca reservoir was represented by 11 species of cyanophyte, bacillariophyte and chlorophyte algae in autumn time, and among them the most abundant were *Synechocystis aquatilis* Sanv., *Aphanizomenon flos-aquae* (L.) Ralfs *f. flos-aquae*, *Oscillatoria lacustris* (Kleb.) Geitl. and *Diatoma vulgare* Bory *var.vulgare*. The values of phytoplankton density (8.1 million cells/l) and biomass (2.1 g/m³) were quite low.

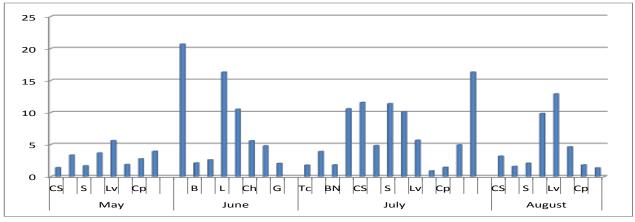
In winter time (December of 2012 – February of 2013) the phytoplankton of reservoir was composed by 9 species of bacillariophyte, cyanophyte and chlorophyte algae and showed an insignificant development, with a density of 1.67-2.43 million cells/l and a biomass of 1.14-1,91 g/m³. In the Prut River the winter phytoplankton was represented by a total number of 30 species and intraspecific taxa, most of them referring to bacillariophyte algae. The phytoplankton density in

the Prut River in winter time ranged from 1.13 to 9.93 million cells/l, with the highest values at Braniste and Giurgiulesti stations, and biomass – from 2.35 to 3.58, with the highest values at Sculeni and Giurgiulesti stations.

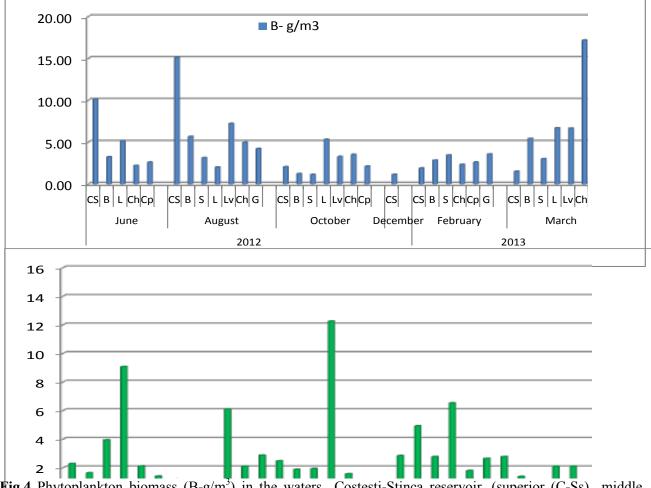
During the entire period of investigations (June of 2012 - March of 2013) 131 species and intraspecific taxa have been identified in the structure of the Prut River phytoplankton, which refer to 7 phyla: *Cyanophyta* – 7, *Chrysophyta* – 1, *Bacillariophyta* – 50, *Xanthophyta* -2, *Dinophyta* – 4, *Euglenophyta* – 12, *Chlorophyta* – 48 (Table 2). In Costesti-Stinca reservoir 42 species and intraspecific taxa have been registered, most of them pertaining to the *Bacillariophyta* (15) and *Chlorophyta* (16) groups. The highest input in the formation of phytoplankton density it is made by cyanophyte algae, and of phytoplankton biomass – by bacillariophyte and chlorophyte algae.

The phytoplankton density has varied during the June of 2012 - March of 2013 between 1.13-29.58 million cells/l in the Prut River and 1.46-31.29 million cells/l in Costesti-Stinca reservoir (Fig.3), and phytoplankton biomass - in diapason of 1.15-17.19 g/m³ in the Prut River and of 1.14-30.26 g/m³ in Costesti-Stinca reservoir (Fig. 4).


Table 2 List of species of planktonic algae identified in the Prut River and Costesti-Stinca reservoir	
in June of 2012 – March of 2013	


Taxoni	S	r. Prut	Lacul Costești- Stînca
Cyanophyta			
Merismopedia tenuissima Lemm.	β- α	+	-
Synechocystis aquatilis Sanv.		+	+
Microcystis aeruginosa Kutz. f.aeruginosa	β	+	-
Microcystis pulverea (Wood.) Forti f. pulverea	0 –β	+	-
Gloeocapsa turgida (Kutz.) Hollerb. f.turgida	0	+	+
Anabaena spiroides Kleb. f.spiroides	о –β	+	+
Anabaena flos-aquae (Lyngb.) Breb. f. flos-aquae	β	+	-
Aphanizomenon flos-aquae (L.)Ralfs f.flos-aquae	β	+	+
Oscillatoria lauterbornii Schmidle	ρ	+	-
Oscillatoria subtilissima Kutz.	α	+	-
Oscillatoria kisselevii Anissim		+	-
Oscillatoria lacustris (Kleb.) Geitl.		+	+
Oscillatoria planctonica Wolosz.		+	+
Romeria leopoliensis (Racib.) Koczw	0-β	+	-
Total		14	6
Chrysophyta			
Dinobryon sertularia Ehr.var.sertularia	0	+	+
Total		1	1
Bacillariophyta			
Melosira granulata (Ehr.) Ralfs var.granulata	β	+	+
Melosira italica (Ehr.) Kutz. var. italica	0-β	+	
Cyclotella ocellata Pant.		+	+
Cyclotella Kuetzingiana Thw.	β	+	+
Cyclotella meneghiniana Kutz var.meneghiniana	α-β	+	
Cyclotella comta (Ehr.) Kutz. var.comta	0	+	
Diatoma vulgare Bory var.vulgare	β	+	+
Diatoma vulgare var. lineare Grun.		+	+

Fragillaria virescens Ralfs var. virescens	X	+	
Synedra ulna (Nitzsch.) Ehr. var.ulna	β	+	+
Synedra acus Kutz. var.acus	β	+	
Asterionella formosa Hass	0-β	+	+
Cocconeis placentula Ehr. var.placentula	β	+	+
Rhoicosphenia curvata (Kutz.) Grun. var. curvata	β	+	
Stauroneis anceps Ehr.var.anceps	β	+	
Navicula lacustris Greg.	,	+	
Navicula cryptocephala Kutz. var.cryptocephala	α	+	+
Navicula cryptocephala var.intermedia Grun.	β	+	
Navicula hungarica Grun.	β	+	
Navicula hungarica var.capitata Cl.	β- α	+	
Navicula cincta (Ehr.) Kutz. var.cincta	β-α	+	
Navicula grasilis Ehr.	β-ο	+	
Navicula peregrina (Ehr.) Kutz. var.peregrina	F *	+	
Navicula exigua (Greg.) O.Mul. var.exigua	β	+	
Navicula pusilla W.Sm.var.pusilla	P	+	
	α	+	
Navicula pygmaea Kutz.	β	+	
Pinnularia viridis (Nitzsch.) Ehr.	P	+	
<i>Gyrosigma distortum (W.Sm.) Cl. var.distortum</i>	α	+	
Gyrosigma acuminatum (Kutz.) Rabenh. var. acuminatum	ŭ	+	
Gyrosigma fasciola Ehr.	ο-β	+	
Amphora ovalis Kutz. var.ovalis	0-μ	+	
Amphora venata Kutz. var. venata		+	
Cymbella turgida (Greg.) Cl.	ß	+	+
Cymbella ventricosa Kutz. var. ventricosa	β β	+	
<i>Cymbella lanceolata (Ehr.) V.H. var.lanceolata</i>	р	+	+
Cymbella tumida (Breb.) V.H. var.tumida	ß		+
Gomphonema olivaceum (Lyngb.) Kutz. var.olivaceum	β	+	+
Hantzschia amphioxys Grun. var.amphioxys	α	+	
Nitzschia palea (Kutz.) W.Sm. var.palea	α		
Nitzschia kuetzingiana Hilse	0	+	
Nitzschia sigmoidea (Ehr.) W.Sm. var.sigmoidea	β	+ +	+
Nitzschia acicularis W.Sm. var. acicularis	α		+
Nitzschia longissima var.reversa (Breb.) Ralfs.W.Sm.	0	+	
Cymatopleura solea (Breb.) W.Sm.var.solea	β- α	+	
Cymatopleura eliptica (Breb.) W.Sm. var. eliptica	β	+	
Surirella robusta Ehr. var.robusta	0	+	
Surirella robusta var. splendida Ehr.	β	+	
Surirella ovata Kutz. var.ovata	β	+	
Navicula sp.		+	
Nitzschia sp.		+	
Total		50	15
Xanthophyta	0		
Centritractus belanophorus Lemm.	ο-β	+	
Ophiocytium lagerheimii Lemm.		+	


Total		2	0
Dinophyta			
Glenodinium quadridens (Stein.) Schiller.		+	
Glenodinium gymnodinium Penard.		+	+
Peridinium cinctum (O.F.M.) Ehr. var. cinctum		+	
Ceratium hirundinella (O. F.M.) Bergh.	0	+	+
Total		4	2
Euglenophyta			
Trachelomonas verrucosa Stokes var.verrucosa		+	
Trachelomonas intermedia Dang. f.intermedia		+	+
Trachelomonas oblonga Lemm. var.oblonga	β	+	
Trachelomonas hispida (Perty) Stein. var. hispida	β	+	+
Strombomonas fluviatilis (Lemm.) Defl. var. fluviatilis	β	+	
Euglena viridis Ehr. var. viridis	ρ-α	+	
Euglena polymorpha Dang.	α	+	
Euglena acus Ehr. var. acus	β	+	
Euglena oxyuris Schmarda var. oxyuris	β- α	+	
Lepocinclis fusiformis (Carter) Lemm var. fusiformis	β	+	
	β	+	
Phacus pleuronectes (Ehr.) Duj. var. pleuronectes	4	+	
Monomorphina nordstedtii (Lemm.) Popova		12	2
Total		12	2
Volvocophyceae		+	
Chlamydomonas globosa Snow.		+	+
Carteria globosa Korsch.		+	
Carteria pallida Korsch.	ß	+	+
Eudorina elegans Ehr.	β	+	
Pandorina morum (Mull.)Bory	β		
Total		5	2
Chlorococcophyceae			
Golenkinia radiata Chod.		+	+
Treubaria triapendiculata Bern.		+	
Pediastrum simplex Meyen		+	+
Pediastrum tetras (Ehr.) Ralfs var. tetras	β	+	
Pediastrum boryanum (Turp.) Menegh. var.boryanum	β	+	
Pediastrum borianum var. longicorne Reinsch.		+	
Pediastrum duplex Meyen. var. duplex	β	+	+
Chlorella vulgaris Beier.	ρ-α	+	
Tetraedron triangulare Korsch.		+	
Tetraedron caudatum (Corda) Hansg. var. caudatum	β	+	
Tetraedron minimum (A.Br.) Hansg. var. minimum	β	+	
Lagerheimia wratislaviensis Schroed. var. wratislaviensis	β	+	
Lagerheimia genevensis Chod. var. genevensis	β	+	
Lagerheimia ciliata (Laegerh.)Chod.		+	
Oocystis borgei Chnow. var. borgei		+	
Oocystis lacustris Chod.	β-0	+	+
Oocystis parva W.et W.		+	

Monoraphidium komarkovae Nygaard		+	+
Monoraphidium griffithii (Berk.)		+	
Monoraphidium arcuatum (Korsch.)		+	
Monoraphidium minutum (Nag.)		+	+
Monoraphidium contortum Thur.		+	+
Dictyosphaerium pulchellum Wood.		+	
Coelastrum microporum Nageli	β	+	+
Crucigenia tetrapedia (Kirchn.) W.et G.S.West	ο-β	+	+
Tetrastrum triangulare Chod.		+	
Tetrastrum elegans Playfair.		+	
Tetrastrum triacanthum Korschik.		+	
Actinastrum hantzschii Lagerh. var.hantzschii	β	+	
Scenedesmus acutus Meyen		+	
Scenedesmus falcatus Chodat.		+	
Scenedesmus acutiformis Schroed.		+	
Scenedesmus elipticus Corda		+	
Scenedesmus obtusus Meyen		+	
Scenedesmus intermedius Chodat var.intermedius		+	
Scenedesmus intermedius var. balatonicus Hortobagyi		+	
Scenedesmus bicaudatus Dedussenko		+	
Scenedesmus spinosus Chodat		+	+
Scenedesmus quadricauda Turp. var. quadricauda	β	+	+
Micractinium bornhemiense (Conr.)Korsch.		+	+
Total		40	12
Desmidiales			
Closterium gracile Breb. f.gracile		+	+
Cosmarium phaseolus Breb.		+	
Staurastrum tetracerum Ralfs.		+	+
Total		3	2
Total	74	131	42

Fig. 3 Phytoplankton density (N-million cells/l) in the waters Costesti-Stinca reservoir, (superior (C-Ss) middle sector (C-Sm), next to the dam (C-S), and in the Prut River (Cr-Criva, T-Titcani, B-Braniste, S-Sculeni, L-Leuseni, Lv-Leova, C-Cahul, C-P-Cislita-Prut, G-Giurgiulesti), August- December of 2012, February-March of 2013, and May-August of 2013

Fig.4 Phytoplankton biomass (B-g/m³) in the waters Costesti-Stinca reservoir, (superior (C-Ss) middle sector (C-Sm), next to the dam (C-S), and in the Prut River (Cr-Criva, T-Titcani, B-Braniste, S-Sculeni, L-Leuseni, Lv-Leova, C-Cahul, C-P-Cislita-Prut, G-Giurgiulesti), August- December of 2012, February-March of 2013, and May-August of 2013

Note: * - in the figure the August 2012biomass was diminished twice.

Of the total of 131 identified species, 74 are indicators of the degree of water saprobity. Among them 58% are β -mesosaprobic species, 9,5%- α -mesosaprobic species, and 13,5% are β -o and o- β saprobic species (Fig.5).

Values of saprobic index, accordingly to the indicatives species from the phytoplankton composition, ranged from 1.44 to 3.17, the water quality being better in the middle sector and worse- in the lower sector of the river. A better quality had the water in the lower sector of Costesti-Stinca reservoir (1.72-1.78).

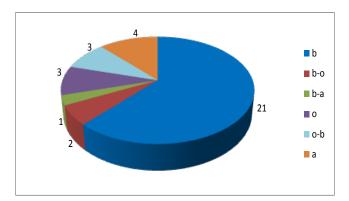
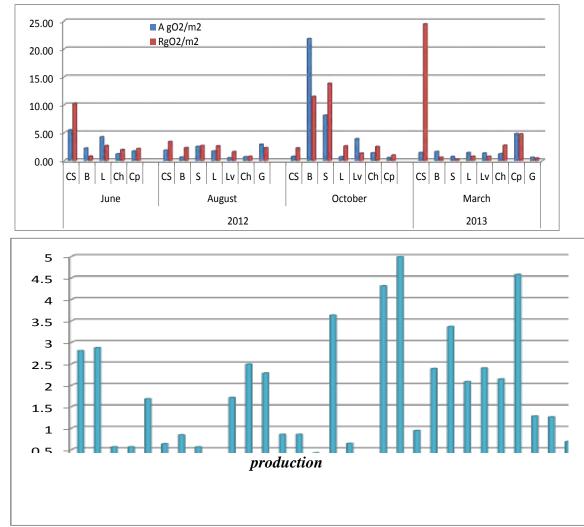
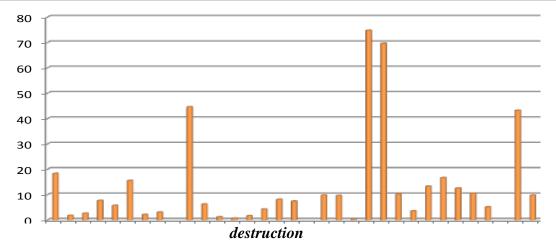




Fig. 5 Distribution of indicative species of phytoplankton from the Prut River accordingly to saprobity zone

There were established considerable differences between the values of phytoplankton primary production and destruction of organic matter in different sectors of the Prut River. In June of 2012 the highest intensity of production processes was registered in the lower sector of the Costesti-Stinca reservoir (5.51 gO₂/m⁻² 24h) and in the middle sector of the river, at the stations Braniste and Leuseni, where the values of primary production were situated in the range 2.25-4.28 gO₂/m⁻² 24h (Fig. 6).

Fig. 6 Dynamics of phytoplankton primary production (A- gO_2/m^{-2} 24h) and destruction of organic matter (R- gO_2/m^{-2} 24h) in the waters. Costesti-Stinca reservoir, (superior (C-Ss) middle sector (C-Sm), next to the dam (C-S), and in the Prut River (Cr-Criva, T-Titcani, B-Braniste, S-Sculeni, L-Leuseni, Lv-Leova, C-Cahul, C-P-Cislita-Prut, G-Giurgiulesti), August- December of 2012, February-March of 2013, and May-August of 2013

Note: the values of destruction of organic matter were diminished by four times in 2012-Mqrch 2012, in in 10 times in Costesti Stinca in May-August of 2013.

In August of 2012 the higher values of primary production were recorded in the lower sector of the Costesti-Stinca reservoir (1.88 gO₂/m⁻² 24h), at the stations Sculeni (2.53 gO₂/m⁻² 24h) and Leuseni (1.73 gO₂/m⁻² 24h) from the middle sector of the Prut River and at the Cislita-Prut station (2.93 gO₂/m⁻² 24h) from its lower part. Spatial fluctuations of primary production values in the river are accompanied by the fluctuations of phytoplankton biomass, successions of the plankton algae communities, modifications of nutrient concentrations and oscillations of water transparency, determined by the content of suspended substances.

The values of destruction of organic matter evidently exceeded the values of phytoplankton primary production both in lower sector of Costesti-Stinca reservoir and in all three river sectors. Thus, in June, the values of destruction of organic matter varied in the range from 2.46 to 8.56 gO_2/m^{-2} 24h in the Prut River, the highest figure being registered at Leuseni station (Fig.6).

In August of 2012 the values of destruction of organic matter oscillated from 0.97 to 5.86 gO_2/m^{-2} 24h, the highest figure being encountered at Cislita-Prut station. This parameter had much higher values in the lower sector of Costesti-Stinca reservoir both in June (13.73 gO_2/m^{-2} 24h) and August (41.18 gO_2/m^{-2} 24h), showing a direct correlation with values of phytoplankton primary production and biomass.

The A/R ratio less than 1 reflects the negative balance of formation of organic substances in the river and proves a high content of allochthonous substances.

In the lower part of the Costesti-Stinca reservoir, concomitant with the diminishing of water transparency, in autumn time the values of phytoplankton primary production decreased evidently in comparison with the values recorded in summer time, being equal to 0.77 gO₂/m⁻² 24h. Also, the values of destruction of organic matter were lower -9.14 gO₂/m⁻² 24h.

The water transparency in the middle sector of the Prut River was of 150-200 cm, being much higher than in the lower sector of river, where it not exceeded 20 cm. The values of phytoplankton primary production and destruction of organic matter in the Prut River in autumn season were higher than in summer one. As in summer period, there were recorded important differences between the values of phytoplankton primary production and destruction of organic matter in autumn in different sectors of the Prut River. The highest intensity of production processes in autumn season was registered in the middle sector of Prut River, its values ranging from 8.13 to 21.8 g O_2/m^{-2} 24h. The values of destruction of organic matter were within 46.01-55.32 g O_2/m^{-2} 24h (Fig. 6).

In the lower sector of the Prut River the values of phytoplankton primary production were mush lower – from 0.55 to 3.93 gO₂/m⁻² 24h, the highest value being recorded at Leova station. The values of destruction of organic matter exceeded much more the values of phytoplankton production and were ranged between 4.01-10.63 gO₂/m⁻² 24h, the highest figures being recorded at Leuseni and Cahul stations (Fig.6).

In the spring of 2013 the values of phytoplankton primary production in the Prut River were lower, being placed in the diapason 0.6-4.85 gO_2/m^{-2} 24h, the highest value being registered at Cislita-Prut, and the lowest – at Giurgiulesti stations. The values of destruction of organic matter exceeded evidently those of phytoplankton production, being equal to $1.13 - 19.2 \text{ gO}_2/m^{-2}$ 24h, the highest value being observed at Cahul and Cislita-Prut, and the lowest – at Sculeni and Giurgiulesti stations (Fig.6). In Costesti-Stinca reservoir the production processes developed an intensity of 1.45 gO_2/m^{-2} 24h, but the destruction processes- of 97.81 g O_2/m^{-2} 24h.

The A/R ratio less than 1 was characteristic for all investigated stations on the Prut River and Costesti-Stinca reservoir, this fact reflecting the negative balance of formation of organic compounds in the river and a high content of alochtonic substances.

Zooplankton. There were identified 74 species and varieties from 3 taxonomic groups (*Rotatoria, Copepoda, Cladocera*), of which most species (67% of total zooplankton) belongs to *Rotatoria (Brachionus calyciflorus, Brachionus angularis, Brachionus leydijii Filinia longiseta, Keratella quadrata, Notholca squamula, Lecane luna, Notholca squamula, Ascomorpha sp., Polyathra euryptera etc.*); 29.7% refers to *Copepoda (Eudiaptomus gracilis, Mesocyclops leuckarti, Mesocyclops crassus, Macrocyclops albidus, Eucyclops sp., Paracamptus sp., etc.*) and 10.8% - to *Cladocera (Bosmina longirostris, Daphnia longispina, Scaridium sp., Moina sp., Alona affinis, etc.*). Despite of taxonomic domination of *Rotatoria*, only 2 species (*Keratella quadrata, Brachionus angularis*) were registered in each investigated sample.

From quantitative point of view, zooplankton of the Prut River was scarce during investigation period. Its biomass and density were higher at Braniste and Giurgiulesti stations (Table 3).

Station	Rote	atoria	Соре	epoda	Clad	locera	Тс	otal
	N,	В,	N,	B,	N,	В,	N,	В,
	ind/m ³	mg/m ³						
			М	ay 2012				
Braniste	0	0.000	1000	10.600	0	0.000	1000	10.600
Sculeni	0	0.000	700	6.450	0	0.000	700	6.450
Leuseni	200	0.160	800	4.600	0	0.000	1000	4.760
Cahul	500	0.340	200	0.400	0	0.000	700	0.740
Cislita	600	0.300	200	0.400	0	0.000	800	0.700
Giurgiulesti	200	0.400	400	6.800	600	3.000	1200	10.200
				August 201	2			
Costesti-Stinca	2400	0.480	5800	31.800	0	0.000	820	32.28
Braniste	300	0.060	400	2.300	100	3.000	800	5.360
Sculeni	200	0.040	300	4.250	0	0.000	500	4.290
Leuseni	200	0.080	200	2.700	100	0.500	500	3.280
Leova	100	0.200	600	7.300	0	0.000	700	7.500
Cahul	100	0.04	300	2.100	0	0.000	400	2.140
Cislita	200	0.040	100	0.200	100	3.000	400	3.240

Table 3 Density (N) and biomass (B) of main groups of zooplankton in the Prut River, June 2012 – July 2013

Giurgiulesti	2000	4.000	2500	67.400	6500	195.00	11000	266.400
0				ober 2012			11000	200.100
Costesti-Stinca	500	0.100	600	1.200	200	3.400	1300	4.700
Braniste	200	0.080	500	1.000	100	10.00	800	11.080
Sculeni	0	0.000	200	3.400	100	1.700	300	5.100
Leuseni	300	0.120	400	2.900	0	0.000	700	3.020
Leova	0	0.000	100	1.700	200	3.400	300	5.100
Cahul	100	0.04	400	3.100	100	2.500	600	5.640
Cislita	0	0.000	400	2.400	200	6.000	600	8.400
Giurgiulesti	200	0.08	100	0.200	400	6.800	700	7.080
			Febr	uary 2013				
Costesti-Stinca	0	0.000	0	0.000	0	0.000	0	0.000
Braniste	0	0.000	50	3.100	0	0.000	50	3.100
Sculeni	50	0.010	100	0.200	0	0.000	150	0.210
Cahul	100	0.140	0	0.000	0	0.000	100	0.140
Cislita	200	0.320	0	0.000	0	0.000	200	0.320
Giurgiulesti	1300	2.510	0	0.000	0	0.000	1300	2.510
			Ma	rch 2013				
Costesti-Stinca	250	1.710	200	0.400	0	0.000	450	2.110
Braniste	6500	21.510	1100	32.200	300	6.750	7900	60.460
Sculeni	1800	5.350	550	7.100	0	0.000	2350	12.450
Leuseni	300	0.890	300	8.400	100	1.700	700	10.990
Leova	600	0.140	900	2.700	0	0.000	1500	2.840
Cahul	600	0.370	600	3.900	0	0.000	1200	4.270
Cislita	2000	2.260	1200	18.050	300	5.100	3500	25.410
Giurgiulesti	700	0.330	1100	6.050	0	0.000	1800	6.380
			Ар	ril 2013				
Costesti-Stinca	1800	0.800	100	0.200	0	0	1900	1.000
Braniste	1200	2.790	1100	18.100	0	0	2300	20.890
Sculeni	600	0.210	600	4.800	0	0	1200	5.010
Leuseni	100	0.040	1800	12.750	0	0	1900	12.790
Leova	100	0.030	900	3.850	0	0	1000	3.880
Cahul	500	1.110	200	2.000	0	0	700	3.110
Cislita	500	0.640	200	4.500	0	0	700	5.140
Giurgiulesti	3900	8.120	11200	80.050	0	0	15100	88.170
	r		Μ	ay 2013	-	1	ſ	
Costesti-Stinca	1040	0.416	2720	58.080	160	3.200	3920	61.696
Braniste	2470	0.988	1170	44.850	520	10.010	4160	55.848
Sculeni	100	0.040	200	0.400	0	0	300	0.440
Leuseni	120	0.240	120	0.240	0	0	240	0.480
Leova	140	0.154	70	0.140	0	0	210	0.294
Cahul	130	0.026	260	3.510	0	0	390	3.536
Cislita	240	0.096	3000	59.460	2640	161.880	5880	221.436
Giurgiulesti	120	0.024	240	0.480	240	4.080	600	4.584

			Ju	ne 2013				
Costesti-Stinca	80	0.016	80	0.160	80	1.360	240	1.536
Braniste	0	0	300	9.600	0	0	300	9.600
Sculeni	130	0.026	130	1.625	0	0	260	1.651
Leuseni	100	0.080	50	0.100	0	0	150	0.180
Leova	0	0	100	0.200	100	2	200	1.900
Cahul	240	0.480	240	0.480	0	0	480	0.960
Cislita	1100	3.960	4600	53.650	600	60.000	6300	117.610
Giurgiulesti	100	0.200	900	8.900	200	10.800	1200	19.900
			Ju	ly 2013			L	
Criva (Prut River)	100	0.02	250	2.000	0	0	350	2.020
Tetcani (Prut River)	0	0	0	0	0	0	0	0
Badrajii Noi (Costesti-Stinca, upper sector)	0	0	0	0	0	0	0	0
Duruitoarea Noua (Costesti- Stinca, middle sector)	850	0.34	1850	19.950	700	12.100	3400	32.390
Costesti-Stinca, lower sector	100	0.04	650	7.750	0	0	750	7.790
Braniste	100	0.04	300	0.600	0	0	400	0.640
Sculeni	50	0.425	0	0.000	0	0	50	0.425
Leuseni	50	0.01	50	0.625	0	0	100	0.635
Leova	100	0.2	50	0.850	0	0	150	1.050
Cahul	50	0.01	50	1.125	0	0	100	1.135
Cislita	100	0.02	100	3.500	0	0	200	3.520
Giurgiulesti	50	0.1	100	0.200	100	10.000	250	10.300

In the Costesti-Stinca reservoir the taxonomic composition of zooplankton in winter period differs from those of vegetation period. For instance, among *Rotatoria* are dominant *Asplanchna sp.* and *Filinia longiseta*, among *Copepoda - Nauplii Calanoida*, *Copepodit Calanoida*, *Metadiaptomus asiaticus*, and *Acanthocyclops gigas*, among *Cladocera - Bosmina longirostris* and *Daphnia cucullata*.

The indicative species of saprobity zone make up to 95% of total number of species identified in the Prut River. Their majority (38%) belongs to the group of species characteristic for β -saprobic zone. As average for investigated stations, the saprobity index varied in a narrow diapason -1.50 – 2.50, which correspond to the β -mesosaprobic zone.

Benthic macroinvertebrates. Monitoring of freshwater ecosystems mandatory includes macrozoobenthic animals as object of study; this group of animals meets several requirements for indicator organisms: wide distribution, enough high density, relatively large size of the body, combination of populating certain biotopes and a certain degree of mobility.

Benthic invertebrates were sampled using standardized methods with the Petersen grab, area of capture - 250 cm^2 or $1/40 \text{ m}^2$. For qualitative samples it has been used a dredge for different substrates including macrophytes. For the preservation of the samples it has been used 4% formaldehyde and 70% alcohol.

The large *Bivalvia* molluscs were identified in the field, weighted and left in the found ecosystem according to the recommendations of the AQEM. All the other organisms were sorted as

much as possible by groups or species afterwards in the laboratory and identified with using of identification keys (Jadin, 1952; Mordukhai-Boltovsky, 1968, 1969, 1972; Kutikova, Starobogatov, 1977; Tsalolikhin, 1994, 1995, 1997, 2000, 2001, 2004).

The identification of species is carried out by use of stereomicroscope MEC-9 and upright microscope *Jenaval* (Zeiss). Last months, the stereomicroscope SteREO *Discovery.V8* (Zeiss) and upright microscope *Axio Imager A.2* (Zeiss), which were purchased in the frame of this project, are used.

The biomass of benthic organisms was determined via their weighting, being previously dried up on a paper filter till the disappearance of wet spots. The analytical balance ABS 80-4 Kern, with the readout of 0.1 mg was used. The density and biomass of organisms were recalculated to ind./m² and, correspondingly, to g/m^2 .

During May 2012-March 2013, using different sampling methods, e.g. dredge and Petersen grab, it has been collected and identified 107 invertebrate taxa (Table 4).

The number of species at each sampling site differed significantly. This difference may occur because of various ecological conditions: hydromorphological, hydrochemical, type of substrate, and level of anthropogenic load.

According to the average values, the diversity of benthic invertebrates revealed an evident diminution alongside the Prut River (Fig.7

		Station						
	Taxonomic group	Braniste	Sculeni	Leuseni	Leova	Cahul	Cislita- Prut	Giurgiul esti
	Nematomorpha							
•	Gordius sp.	+						
•	Nematoda	+	+		+	+		+
	Gastropoda							
•	Lymnaea ovata	+	+		+			
•	Lymnaea stagnalis	+						
•	Galba truncatula	r						
•	Physa fontinalis	+						
•	Physa acuta	+					r	
•	Acroloxus lacustris	+						
•	Theodoxus danubialis					+		
•	Theodoxus fluviatilis	r	+		+		+	
•	Viviparus viviparus						+	
•	Viviparus contectus				r	r		
•	Valvata piscinalis	+						
•	Bithynia tentaculata	+						
•	Lithoglyphus naticoides	+	+		+	+		r
•	Fagotia esperi	+						
•	Fagotia acicularis	+	+	+				
	Bivalvia							
•	Anodonta piscinalis					+		
•	Sinanodonta woodiana					+	+	
•	Unio tumidus					+	+	
•	Unio longirostris					+		
•	Crassiana crassa			+		+		ĺ
•	Pisidium amnicum	+	+					
•	Pisidium casertanum	+						
•	Pisidium moitesserianum	+						
•	Dreissena polymorpha	r	r		r	+		

Table 4 List of benthic invertebrate taxa from the Prut River, 2012-2013

	Ducies ou a hug ousis		1	1	1			1
•	Dreissena bugensis	+						
•	Corbicula fluminea						+	
	Oligochaeta							
•	Branchiura sowerbyi	+				+		+
•	Lumbriculidae Gen sp					+		
•	Lumbriculus variegatus	+						+
•	Nais spec. none	+	+		+			
•	Stylaria lacustris	+	+					
•	Ophidonais serpentina	+		+	+			
•	Tubifex sp.div	+	+	+	+	+	+	+
•	Tubifex tubifex		+					
	Crustacea							
	Mysidacea							
-	Limnomysis benedeni	+		+	+	+	+	
•	Paramysis lacustris	+	+	+	+	+	+	
•		т	Т	Т	Ţ	Т	Т	
	Amphipoda Dikarogammarus	+	+	+	+		+	
•	Dikerogammarus haemobaphes	+	–	–			-	
•	Dikerogammarus		+		+			
•	villosus							
•	Gammarus sp	+						
•	Chaetogammarus	+	+	+	+			
	warpachowskyi							
•	Chaetogammarus ischnus	+	+	+	+			
•	Chaetogammarus sp						+	
•	Gmelina sp		+					
•	Iphigenella andrussowi	+	+					
•	Iphigenella acanthopoda		+					
•	Corophium curvispinum				+	+		
•	Corophium nobile			+	+		+	
•	Corophium robustrum			+			+	
•	Corophium sp				+			
	Corophium chelicorne			+				
•	Ephemeroptera							
•	Caenis sp.	+						
•	Caenis sp. Caenis horaria	+						
•								
•	Cloeon dipterum	+						
•	Palingenia longicauda	+	+	+	+			
•	Heptagenia coerulans		+		+		+	
•	Heptagenia flava				+			
•	Potamanthus luteus	+						
•	Baetis sp	+	+	+	+			
•	Baetis rhodani	+					+	
	Odonata							
٠	Coenagrionidae	+						
	(Erythromma sp.)							
•	Platycnemis pennipes		+					
•	Agrion splendes Harris	+	+	+				
•	Agrion virgo	+						
•	Gomphus vulgatisimus		+					
•	Gomphus (Stylurus)		+				+	
	flavipes							
	Heteroptera							

• Plea minutissima	+		1		+	+	
 Mesovelia sp 	+						
Nepa cinerea	+						
 Aphelocheirus aestivalis 	+						
 Sigara falleni 	1					+	
						Т	
Coleoptera	+						
Haliplidae	+						
• Dytiscidae	+						
Colembolla		+			+	+	
Trichoptera							
Triaenodes bicolor				+			
• Hidroptila sp.	+				+		
• <i>Hydroptila tineoides</i>	+	+					
Ecnomus tenellus	+	+				+	
Polycentropidae	+	+					
• Hydropsyche ornatula	+		+	+		+	
• Limnephilidae	+						
• Leptoceridae	+						
• Mystacides sp.	+						
Agraylea multipunctata	+						
Diptera							
Chironomidae							
Chironomus plumosus	+				+		+
• Chironomus gr. tummi				+			
Chironomus silvestris	+						
• Chironomus sp.div none	+	+		+	+	+	
• Chironomini Gen. sp.		+	+				
• Orthocladius sp.	+	+	+	+	+	+	+
 Diamesa insignipes 	+						
 Diamesa sp 				+			
 Prodiamesa sp 	+			1			
Tanypus vilipennis	+	+	+			+	
	1	+	1			1	
(11.1.1		+					
Ablabesmyia gr. lentiginosa							
Ceratopogonidae	+					+	
 Bezzia sp 		+					
 Bezzia sp Culicidae 		+	+		+		
 Culicoides setosinervis 		+					
Cuncoides selosinervis Simuliidae	+		+	+			
m 1 11	+	+	1	+			
TT: 1:1					+		
_							
Dolichopodidae					+		
Lepidoptera							
• Ptychoptera		+					
• Megaloptera(Sialidae)	+						
Total	65	40	21	28	24	24	6

*r-shells

The density is most rich at Braniste station – there were registered 211imnophylic species (33%), 26 limnophylic and reophylic species (41%) and only 16 reophylic species (25%). This

phenomenon demonstrates the influence of hydrological conditions and flow from Costesti-Stinca reservoir on the diversity of benthic organisms at the given station. The density and biomass of benthic organisms have the lowest values at Giurgiulesti station (Fig.7).

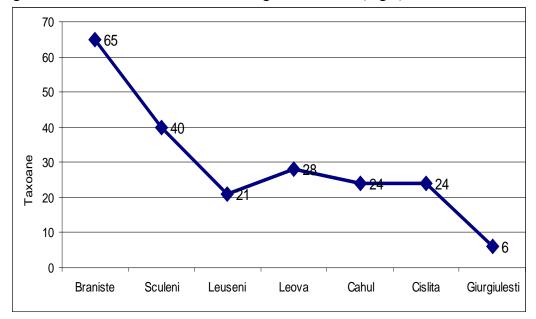


Fig.7 Taxonomic diversity of benthic invertebrates in the Prut River, 2012-2013

It is important to mention that at Braniste station are registered species, which are characteristic for clean zones of aquatic ecosystems – 7 species of *Ephemeroptera* and 9 species of *Trichoptera*. Also, at this station for the first time was registered a very rare species – bivalve mollusc *Pisidium moitesserianum*.

With reference to the samples, which were collected with the Petersen grab, the total biomass varied from 0.006 g/m² to 2971.764g/m², the biomass without molluses – from 0.006 g/m² to 58.2995 g/m², and the density of total zoobenthos – from 6 ind./m² to 39000 ind./m² (Table 5).

There are a range of methods for determination of water quality, or of assessment of aquaric ecosystem state in dependence of state and density of benthic invertebrates. Thus, in line with the oligochaete index of Goodnight & Whitley (1961), the water of Prut River is characterized as polluted, but according to the Biological Monitoring Working Party index (BMWP) - from moderately polluted to critically polluted.

The saprobity zones calculated based on macrozoobenthos from the lower sector of the Prut River varied within β -mesosaprobic and α - mesosaprobic and the water quality class - within the moderately polluted and critically polluted.

Station	Zoobenthos without	Zoobenthos without	Total zoobenthos,	Total zoobenthos,
	molluscs, ind./m ²	molluscs, g/m ²	ind./m ²	g/m ²
		June 2012		
Braniste	15922	19.379	16562	44.819
Leova	884	0.216	1364	1.056
Cahul	346	0.2637	346	0.2627
		August 2012		
Braniste	17080	6.404	17720	66.724
Sculeni	6360	4.204	6400	4.244
Braniste	18775	15.2973	19895	85.1053

Table 5 Density (ind./m²) and biomass (g/m^2) of zoobenthos from the Prut River, June 2012- July 2013

Sculeni	16174	58.2995	17854	240.9915
Leuseni	8528	12.4305	8568	1247.711
Leova	9723	7.748	9723	7.748
Cahul	23226	19.0748	23226	19.0748
Cislita-Prut	1137	14.476	1337	2971.844
Giurgiulesti	4080	4.008	4080	4.008
		February 2013		
Braniste	38760	34	39000	89.12
Sculeni	8179	22.631	10073	594.541
Cahul	1480	0.16	1480	0.16
Cislita-Prut	137	0.4865	137	0.4865
Giurgiulesti	40	0.04 March 2013	40	0.04
Braniste	22648	13.811	23048	44.291
Sculeni	5604	5.638	6244	68.998
Leuseni	10482	11.163	10522	578.135
Leova	7792	2.347	7872	13.587
Cahul	4402	1.791	4402	1.791
Cislita-Prut	6	0.006	6	0.006
	I	April 2013	1	
Braniste	87	0.188	87	0.188
Sculeni	36	0.1571	36	0.1571
Leuseni	35	0.517	36	0.66
Cahul	67	2.409	73	24.166
Cislita-Prut	32	0.2101	32	0.2101
Giurgiulesti	87	0.188	87	0.188
x		May 2013	· ·	
Costesti-Stinca	17	0.0225	17	0.0225
Braniste	8161	37.529	8641	86.569
Sculeni	7763	10.681	8043	43.481
Leuseni	2028	2.055	2108	2.135
Leova	4341	2.392	4341	2.392
Cahul	2281	0.821	2361	7.701
Cislita-Prut	1482	13.49	1522	13.53
Giurgiulesti				
		June 2013		
Costesti-Stinca	3	0.025	3	0.025
Braniste	23286	13.5137	23886	45.2337
Sculeni	6761	10.0122	8041	106.4922
Leuseni	32200	18.12	32200	18.12
Leova	3043	7.3497	3083	14.2697
Cahul	2121	0.915	2281	0.995
Cislita-Prut	54	0.156	57	0.555
		July 2013		
Criva	1760	9.041	2000	11.401
	07(0	22.472	13600	198.312
Tetcani	9760	22.4/2	15000	1,0.012
Tetcani Badragii Noi	21920	58.4	22080	60.84

Costesti-Stinca	4	0.0055	19	0.1155
Braniste	21160	29.92	21520	58.28
Sculeni	3721	3.889	14721	500.369
Leuseni	3920	0.84	3920	0.84
Leova	5440	6.72	5760	7.2
Cahul	4000	4.32	4080	873.828
Cislita-Prut	1280	1.44	1480	32.155
Giurgiulesti	480	0.8	480	0.8

The taxa with the lowest occurrence were: *Hydra*, *Bryozoa*, *Collembola*, *Theodoxus* transversalis, Pisidium moitesserianum, Conchostraca, Notostraca, Ephemera vulgata, Polymitarsis virgo, Phryganeidae, Anabolia furcata, Mystacides sp., Simuliidae, Megaloptera (Sialidae).

The highest number of rare species has been remarked at the Tetcani and Braniste stations. Along the river stream, the total number of species has differed significantly: Criva - 8, Tetcani -29, Badragii Noi - 11, Duruitoarea Noua - 4, Costesti-Stinca - 6, Braniste-85, Sculeni-53, Leuseni -39, Leova -43, Cahul - 50, Cislita-Prut - 50, and Giurgiulesti - 9. The differences may occur because of various ecological conditions: hydromorphological, hydrochemical, type of substrate, and level of anthropogenic load.

The Braniste station has distinguished by the highest values of density and species diversity – there have been registered up to 85 species. This phenomenon demonstrates the influence of hydrological conditions and flow from Costesti-Stinca reservoir on the diversity of benthic organisms at the given station. Also, there have been registered species, which are characteristic for clean zones of aquatic ecosystems – 7 species of *Ephemeroptera* and 9 species of *Trichoptera*.

The total biomass has varied from 0.006 g/m² to 2971.764g/m², the biomass without molluses – from 0.006 g/m² to 58.4 g/m², and the density of total zoobenthos – from 6 ind./m² to 39000 ind./m². The density and biomass of benthic organisms have had the lowest values at Giurgiulesti station.

The state of benthic invertebrate communities and the density of invertebrate taxa are extremely important for the determination of water quality, and assessment of aquatic ecosystem state, in general. Thus, during the investigation period the saprobity zones calculated based on macrozoobenthos from the Prut River have varied within β -mesosaprobic and α --mesosaprobic and the water quality class - within the moderately polluted and critically polluted.

D.1.2 Qualitative and quantitative characterization of fish populations, aiming at preserving their biodiversity

The ichthyologic materials were collected in summer-autumn of 2012 in the bed of Prut River and in autumn-winter- in the Costesti-Stinca reservoir, using stationary nets (the mesh size used in the nets varied from 15 mm x 15 mm to 80 mm x 80 mm, in dependence of collection aim) and trammel for juvenile (lenght of trammel is 6 m, the mesh size is 5 mm) (Fig. 8).

Fig. 8 Collection of fish samples, 2012

The majority of captured individuals were returned alive to the water. A small number was fixed in 4% formalin solution for laboratory study. Ichthyologic material analysis was performed by using classical ecological and ichthyologic methods (Banarescu, 1964; Kottelat, Freyhof, 2007; Navodaru et al., 2008).

As result of ichthyologic investigations carried out in 2012 in the Prut River ecosystem, it was established the presence of an ichthyologic assemblage, composed by 39 species of fish, which were assigned to 9 families and 6 orders: order *Clupeiformes*, family *Clupeidae* (1 species); order *Esociformes*, family *Esocidae* (1 species); order *Cypriniformes*, family *Cyprinidae* (2 species), family *Cobitidae* (2 species); order *Siluriformes*, family *Siluridae* (1 species), order *Gasterosteiformes*, family *Gasterosteidae* (2 species) order *Perciformes*, family *Percidae* (4 species), family *Cobitae* (1 species).

To highlight the comparative aspect of the Prut River ichthyofauna and ichthyofaunictic successions in last decades, it was made the analysis of existing literature in the field, starting with data of such scientists as Grimaliskii V. (1970), Popa L. (1976; 1977), Popa L., Frunza M., and Panas E. (1985), Dolghii V. (1993), Usatii M. (2004), Davideanu Gr. (2008) and recent data (Table 6).

In Prut riverbed the following species registered the highest values of relative abundance: Alburnus alburnus (Linnaeus, 1758) -14.5%, Blicca bjoerkna (Linnaeus, 1758) – 6.38%, Silurus glanis (Linnaeus,1758) – 4.42%, Aspius aspius (Linnaeus, 1758) – 6.14%, Hypophthalmichthys molitrix (Valenciennes, 1844) – 4.67%, Neogobius fluviatilis (Pallas, 1814) – 6.88%, Rhodeus amarus (Bloch, 1782) – 5.16%, Gymnocephalus cernuus (Linnaeus, 1758) – 5.16% etc. It was reported a semnificative abundence of Alosa tanaica (Grimm, 1901) – 3.44%, Leuciscus idus (Linnaeus, 1758) – 2.21% and Pelecus cultratus (Linnaeus, 1758) – 2.21%, which are enough rare in other natural aquatic ecosystems on the territory of Moldova.

The population density of some ichthyophague fish species of the Prut River as *Aspius aspius*, *Silurus glanis* and *Sander lucioperca* (Linnaeus, 1758) reached a satisfactory level (as response to prey abundance - especially fish with short life cycle), but young groups dominate the age structure, which shows a significant illegal fishing pressing.

	Table 6 Ichthyofauna diversity in	the I			2012	anu n	<u>s quai</u>			
		b	Prut River bed 2012		Costesti- Stinca lake 2012		u and 1 lakes 12	Prut River basin Popa L.*	Prut River basin Usatîi M.	Prut River Davidea -nu et.al.
No	No Fish species		Relative abundance %	Numeric abundance	Relative abundance %	Numeric abundance	Relative abundance %	Species diversity 1960-1963 1968-1974	Species diversity 1996-1997	Species diversity 2008
	Ord. Petromiz	ontifor	mes Fa	ım. Petı	omyzoi	ntidae				
1	<i>Eudontomyzon mariae</i> (Berg, 1931) <u>Ukrainian brook lamprey</u>	-	-	-	-	-	-	+	-	-
	Ord. Aciper	nserifor	mes Fa	am. Aci	penseri	dae				
2	Acipenser ruthenus Linnaeus,1758, Sterlet	-	-	-	-	-	-	+	-	-
3	Acipenser nudiventris Lovetsky, 1828 Ship sturgeon	-	-	-	-	-	-	+	-	-
		luneifo	rmes Fa	m. Clui	peidae			I		
4	Alosa tanaica (Grimm, 1901) Azov shad	14	3.44			45	10.9	_	+	
4	· · · · · ·			-	-		2	-	Ŧ	-
	Ord. Sal	1	1	1	1	r		· · ·		
5	Hucho hucho (Linnaeus,1758) Huchen Salmo trutta fario Linnaeus, 1758	-	-	-	-	-	-	+	-	-
6	Brown trout	-	-	-	-	-	-	+	-	-
7	Oncorhynchus mykiss (Walbaum,1792) Rainbow	-	-	-	-	-	-	+	-	-
	trout	Fsocifo	rmes Fa	m Frod	video					
8	<i>Esox lucius</i> Linnaeus,1758 <u>Northern pike</u>	-		-	-	1	0.24	+	+	+
0	2500 metus Emilieus, 1750 <u>restaiem pike</u>	Fam	. Umbri	dae	1	-	0.21	· ·		
9	Umbra krameri Walbaum,1792 Mudminnow	- Tam	-		-	-	-	+	-	-
	Ord. Cy	prinifor	mes Fa	m. Cvn	rinidae					
10	Cyprinus carpio carpio Linnaeus, 1758 Common	1	1	1	1	1	2.16			
10	carp	7	1.72	3	1.41	13	3.16	+	+	+
11	Carassius carassius (Linnaeus, 1758) Crucian carp	-	-	-	-	-	-	+	-	-
12	Carassius gibelio (Bloch, 1782) Prussian carp	24	5.9	5	2.35	57	13.8 3	+	+	+
13	Barbus barbus (Linnaeus, 1758) Barbel	1	0.25	-	-	-	-	+	-	+
14	Barbus borysthenicus Dybowski, 1862 = Barbus barbus (Linnaeus, 1758) <u>Barbel</u>	-	-	-	-	-	-	+	-	-
15	Barbus petenyi Heckel, 1852 Romanian barbel	-	-	-	-	-	-	+	-	-
16	Tinca tinca (Linnaeus, 1758) Tench	-	-	-	-	-	-	+	-	-
17	Chondrostoma nasus (Linnaeus, 1758) Common nase	2	0.49	-	-	-	-	+	-	+
18	Gobio gobio (Linnaeus, 1758) Gudgeon	-	-	-	-	-	-	+	-	+
19	Romanogobio vladykovi (Fang, 1943) Danube	3	0.74	-	-	2	0.49	+	-	+
20	whitefin gudgeon Romanogobio kesslerii (Dybowski, 1862)	_	_	_	_	5	1.21	+	-	+
	Kessler's gudgeon Pseudorasbora parva (Temminck & Schlegel,	4	0.98		0.04					
21	1846) <u>Stone moroko</u> Abramis brama (Linnaeus, 1758) <u>Freshwater</u>			2	0.94	12	2.91	-	+	+
22	bream	12	2.95	19	8.92	6	1.46	+	+	+
23	Ballerus sapa (Pallas, 1814) White-eye bream	15	3.69	7	3.29	4	0.97	+	+	+
24 25	Blicca bjoerkna (Linnaeus, 1758) <u>White bream</u> Vimba vimba (Linnaeus, 1758) <u>Vimba bream</u>	26 2	6.38 0.49	4	1.88	15	3.64 0.24	+ +	+ -	+ +
26	Rutilus rutilus (Linnaeus, 1758) <u>Ninba bicam</u>	7	1.72	15	7.04	19	4.61	+	+	+
27	Rhodeus amarus (Bloch, 1782) Bitterling	21	5.16	3	1.41	14	3.4	+	+	+
28	Aspius aspius (Linnaeus, 1758) Asp	25	6.14	6	2.82	8	1.94	+	+	+
29	Pelecus cultratus (Linnaeus, 1758) Sichel	9	2.21	-	-	4	0.97	+	-	+
30	Squalius cephalus (Linnaeus, 1758) Chub	2	0.49	-	-	1 3	0.24	+	+	+
31 32	Leuciscus idus (Linnaeus, 1758) <u>Orfe</u> Phoxinus phoxinus (Linnaeus, 1758) <u>Eurasian</u>	-	2.21	-	-	-	0.73	+ +	+	+
	minnow Leuciscus leuciscus (Linnaeus, 1758) Common									
33	dace	-	-	-	-	-	-	-	-	-

Table 6 Ichthyofauna diversity in the Prut River in 2012 and its quantitative indices

34	Scardinius erythrophthalmus (Linnaeus, 1758) Rudd	4	0.98	2	0.94	5	1.21	+	+	+		
35	Hypophthalmichthys molitrix (Valenciennes, 1844) Silver carp	19	4.67	11	5.16	16	3.88	+	+	-		
36	Hypophthalmichthys nobilis (Richardson, 1845) Bighead carp	2	0.49	8	3.76	2	0.49	-	-	-		
37	Ctenopharyngodon idella (Valenciennes, 1844) Grass carp	4	0.98	9	4.23	3	0.73	-	-	-		
38	Leucaspius delineatus (Heckel, 1843) Belica	7	1.72	-		12	2.91	+	+	+		
39	Alburnus alburnus (Linnaeus, 1758) Bleak	59	14.5	42	19.7	37	8.98	+	+	+		
		57	14.5	72	2	51	0.90					
40	40 Alburnoides bipunctatus (Bloch, 1782) Schneider + - +											
Fam. Balitoridae 41 Barbatula barbatula(Linnaeus, 1758) Stone loach - - - - + -												
	2	Fam	. Cobiti	dae					l			
42	Cobitis taenia Linnaeus, 1758 Spined loach	2	0.49	9	4.23	5	1.21	+	-	+		
43	Cobitis elongatoides Bacescu et Maier, 1969 Danubian spined loach	7	1.72	-	-	1	0.24	-	-	+		
44	Sabanejewia aurata aurata (De Filippi, 1863) Golden spined loach	-	-	-	-	-	-	+	-	+		
45	Misgurnus fossilis (Linnaeus, 1758) Weatherfish	-	-	-	-	-	-	+	-	+		
		1	rmes Fa		1		L		r	1		
46	Silurus glanis Linnaeus,1758 Wels catfish	18	4.42	2	0.94	17	4.13	+	+	+		
		Gadifo	rmes Fa	ım. Lot	idae							
47	Lota lota (Linnaeus, 1758) Burbot	-	-	-	-	-	-	+	-	+		
	Ord. Gaster Pungitius platygaster (Kessler, 1859) Southern	osteifo	rmes Fa	m. Gas	terostei	dae			[1		
48	ninespine stickleback	-	-	3	1.41	-	-	+	-	-		
49	Gasterosteus aculeatus aculeatus Linnaeus,1758 Three-spined stickleback	-	-	-	-	3	0.73	-	-	-		
	Ord. Syg	nathifo	rmes Fa	m. Sygi	nathidad	e						
50	Syngnathus abaster Risso, 1827 Black-striped pipefish	-	-	-	-	-	-	+	-	-		
			rmes Fa		1							
51	Perca fluviatilis Linnaeus,1758 European perch	2	0.49	16	7.51	4	0.97	+	+	+		
52	Sander lucioperca (Linnaeus, 1758) Pike-perch	15	3.69	12	5.63	9	2.18	+	+	+		
53	Gymnocephalus cernuus (Linnaeus, 1758) Ruffe	21	5.16	5	2.35	21	5.1	+	+	+		
54	Gymnocephalus schraetser (Linnaeus, 1758) Yellow pope	-	-	-	-	-	-	+	-	+		
55	<i>Gymnocephalus baloni</i> Holcík & Hensel, 1974 Danube ruffe	15	3.69	-	-	48	11.6 5	-	-	-		
56	Zingel streber (Siebold, 1863) Streber	-	-	-	-	-	-	+	-	+		
57	Zingel zingel (Linnaeus, 1766) Zingel	-	-	-	-	-	-	+	-	-		
	Non-time barderi (Counther 19(1) Dishard	Fan	1. Gobii T	dae	1		r –			1		
58	Neogobius kessleri (Guenther, 1861) Bighead goby	5	1.23	-	-	4	0.97	-	-	+		
59	<i>Neogobius gymnotrachelus</i> (Kessler, 1857) <u>Racer</u> <u>goby</u>	6	1.47	-	-	2	0.49	-	-	+		
60	<i>Neogobius melanostomus</i> (Pallas, 1814) <u>Round</u> goby	-	-	-	-	-	-	-	-	+		
61	Proterorhinus semilunaris (Heckel, 1837) Western tubenose goby	8	1.97	-	-	-	-	+	+	+		
62	Neogobius fluviatilis (Pallas, 1814) Monkey goby	28 Fam. (6.88 Centraro	21 chidae	-	9	2.18	+	-	+		
63	Lepomis gibbosus (Linnaeus, 1758) Pumpkinseed	2	0.49	-	-	4	0.97	+	+	+		
		Fam. C	dontob	utidae								
64	Perccottus glenii Dybowski, 1877 Chinese sleeper	-	-	-	-	-	-	-	-	+		
Ord. Scorpaeniformes Fam. Cottidae												
65	Cottus gobio Linnaeus, 1758 Bullhead	-	-	-	-	-	-	+	-	-		
66	Cottus poecilopus Heckel, 1837 Alpine bullhead	-	-	-	-	-	-	+	-	-		
	rupine bunneau	_		-					22	41		
	<i>Total (specii)</i> species names which were described in 19		35		22		85	54	23	41		

* Some species names, which were described in 1974, were conformed to the new nomenclature.

The species structure of ichthyocenoses of the Lake Beleu and Lake Manta largely depends on the hydrological regime, temperature and solved gas gradients, and may change significantly during the year. In 2012, due to prolonged drought, the ichthyocenose structure became dominated by such

species as *Carassius gibelio* (Bloch, 1782) -13.83%, *Alburnus alburnus* -8.98%, and *Gymnocephalus baloni* (Holcík & Hensel, 1974) – 11.65%. In the spring of 2012 there were significant reproductive migrations of *Alosa tanaica*, which influenced the relative abundance values (10.92%).

Also, there has occurred a significant increase of the share of economically valuable native species (*Hypophthalmichthys molitrix* (Valenciennes, 1844), *Hypophthalmichthys nobilis* (Richardson, 1845), *Ctenopharyngodon idella* (Valenciennes, 1844)) in the Prut ecosystems as result of major natural disasters in the summer of 2010.

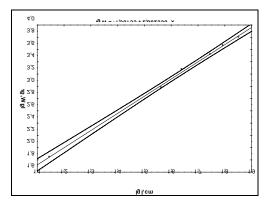
Despite emphatic anthropogenic pressing on fish resources in the lower sector of the Prut River, their quantitative values are maintained due to fish active migration from the Danube River, accidental penetration or intentional stocking by culture species.

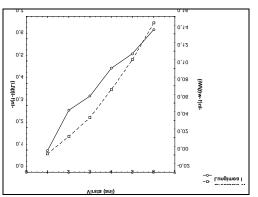
In 2012, there were established an ichthyofauna diversity of 23 species in the Costesti-Stinca reservoir. A favorable growing rate was put in evidence at all species, this fact indicating the existence of optimal nutrition conditions.

The analysis of mathematic model of length and weight growing of *Ctenopharyngodon idella* (Valenciennes, 1844) in the Costesti-Stinca reservoir is presented in Table 7.

Table 7 Empirical metric and gravimetric values and growing parameters of grass carp (Ctenopharyngodon
idella (Valenciennes, 1844) in the Costesti-Stinca reservoir

t		-ln(1-		-ln(1-	lg $\overline{w}(t)$ =a+blg $\overline{\overline{l}(t)}$			
(x)	l(t)	l(t) ∕l∞) (y)	$\overline{w}(t)$	$\overline{w}(t)/w\infty$) (y)	$\lg \overline{l(t)}, (x)$	lg $\overline{w}(t)$, (γ)		
1	14.0	0.097	70	0.001	1.146	1.845		
2	36.5	0.278	940	0.021	1.562	2.973		
3	43.5	0.342	1900	0.043	1.638	3.278		
4	56.0	0.467	3280	0.075	1.748	3.515		
5	62.0	0.533	4700	0.110	1.79	3.672		
6	71.0	0.641	6380	0.152	1.851	3.804		
$S_{x}=21 \\ S_{xx}=91 \\ S_{y}=2.361 \\ S_{yy}=1.11 \\ S_{xy}=10.06$	b=0 t ₀ =- k=0	.033±0.028 .102±0.007 .0.321 .102±0.007 =150	$S_x=21$ $S_{xx}=91$ $S_y=0.404$ $S_{yy}=0.043$ $S_{xy}=1.944$	$a=-0.038\pm0.008$ $b=0.030\pm0.002$ $t_0=-0.321$ $k=0.030\pm0.002$ W co=45000	$S_x=9.738$ $S_{xx}=16.135$ $S_y=19.089$ $S_{yy}=63.316$ $S_{xy}=31.903$	a=-1.367±0.095 b=2.802±0.156		


Two years old grass carp reaches in the Costesti-Stinca reservoir a mean length of 36.5 cm and a mean weight of 940 g, three year old- 43.5 cm and 1900 g, correspondingly, four years old- 56.0 cm and 3280 g, five years old- 62.0 cm and 4700 g, and six years old - 71.0 cm and 6380 g.


The analysis of relationship between length and weight gave a value of b equal to 2.802, indicating a negative alometry and demonstrating a stagnation of weight growth in comparison with length growth. It is worth to mention that this is common for species with oblong body (Fig.9).

The application of Bertalanffy model in assessment of growing parameters of grass carp revealed an accelerated and uniform character of the weight growing rate, which denotes a high potential of weight gain (Fig.10). The type of length growing is more changeable, but fast, which is common for species with long life cycle and big body size.

For bighead carp from the Costesti-Stinca reservoir the empirical data and Bertalanffy mathematic model of growing is presented in Table 8.

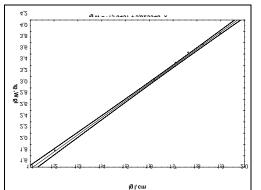
At the age of 2 years the bighead carp reaches an average length of 42.0 cm and an average weight of 136 g, of 3 years 51.5 cm and 2680 g, correspondingly, of 4 years- 58.5 cm and 4050 g, of 5 years -67.0 cm and 5830 g, and of 6 years -79.5 cm and 9090 g.

Fig. 9. Relationship between body weight W (g) and body length l (cm) at the crass carp from the Costesti-Stinca reservoir $lgW=(-1,367\pm0,095)+(2,802\pm0,156)l$

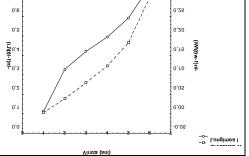
Fig. 10 Assessment of growing parameters of grass carp from the Costesti-Stinca reservoir by Bertalanffy method

Table 8 Empirical metric and gravimetric values and growing parameters of bighead carp(Hypophthalmichthys nobilis (Richardson, 1845)) in the Costesti-Stinca reservoir

t	_	ln(1-		-ln(1-	$lg\overline{w}(t)=a+blg\overline{l}(t)$			
(x)	l(t)	l(t) /l∞) (y)	$\overline{w}(t)$	₩(t)/₩∞) (y)	$lg\overline{l(t)}, (x)$	$\lg \overline{w(t)}, (y)$		
1	16.0	0.112	75	0.002	1.204	1.875		
2	42.0	0.328	1360	0.039	1.623	3.133		
3	51.5	0.420	2680	0.079	1.711	3.428		
4	58.5	0.494	4050	0.122	1.767	3.607		
5	67.0	0.591	5830	0.182	1.826	3.76669		
6	79.5	0.755	9090	0.300	1.900	3.958		
$S_{x}=21$ $S_{xx}=91$ $S_{y}=4.12$ $S_{yy}=3.53$ $S_{xy}=17.87$	$\begin{array}{cccc} S_x=\!$		$S_{x}=21$ $S_{xx}=91$ $S_{y}=0.55$ $S_{yy}=0.08$ $S_{xy}=2.67$	$a=-0.055\pm0.010$ b=0.042\pm0.004 t_0=-0.369 k=0.042\pm0.004 W = 35000	$S_{x}=10.032$ $S_{xx}=17.083$ $S_{y}=19.768$ $S_{yy}=15.670$ $S_{xy}=33.986$	a=-1.764±0.054 b=3.025±0.092		


The application of mathematic model of length and weight growing at bighead carp from Costesti-Stinca reservoir demonstrated that the k value for length is equal to 0.116, and for weight-to 0.042, being quite high and revealing the tendency of fast growing of this species towards the highest physiologic sizes: $l_{00}=150$ cm and $W_{00}=35000$ g.

The analysis of length-weight correlation in logarithmic form demonstrated a b=3.025, which indicated an isometric growing, the speed of length growing being equivalent to those of weight, and revealed the fact that nutrition and growing conditions are excellent in this ecosystem (Fig.11).


The application of Bertalanffy model for appreciation of growing parameters of bighead carp (Fig.12) put in evidence the exponential character of length growing, which denotes a high growing potential of higher age groups (up to a certain limit).

It is important to note that in the frame of control fishing, which was carried out in October-December of 2012 (the results were not included in the Table 5) by stationary net (mesh size -20 mm, net length- 50 m), 10 individuals of barbell (*Barbus barbus*) with an average weight of 70.1 g were caught. Probably, the Costesti-Stinca reservoir became a recipient of juveniles of this typical reophile species after the harsh floods in 2010. Moreover, after the 2010 floods it was observed the significant increase of Vimba bream (*Vimba vimba*) density.

Therefore, the natural hazards in lotic ecosystems may provoke potamodrome migrations (active or passive) of fish, inducing the interpenetration of fishery zones characteristic for a river.

Fig.11 Relationship between body weight W (g) and body length 1 (cm) at the bighead carp from the Costesti-Stinca reservoir $lgW=(-1,764\pm0,054)+(3,025\pm0,092)lgl$

Fig. 12 Assessment of growing parameters of bighead carp from the Costesti-Stinca reservoir by Bertalanffy method

Four field expeditions were made in the spring of 2013. It was found a high level of water, caused by snow melt in the Prut River catchment area and the advancement of water from Danube (for the lower sector of Prut River). This period proved to be favourable to the reproduction of majority of phytophylic and litophylic fish species.

Fig. 13 Lake Beleu during the 2013 spring floods

Fig.14 The high level of water in Costesti-Stinca reservoir in spring of 2013

The relative abundance of the fish species caught in Lake Beleu in April 2013 with stationary nets with mesh size of 20 mm, 30 mm and 40 mm it is presented in Table 9.

		Ø 20 m	n, l=50 m	Ø 30 mm,	l=50 m	Ø 40 mm	n, l=100 m
	Species	and	h=2 m	and h=	-3 m	and h=3 m	
		An(ex)	Ar(%)	An(ex)	Ar(%)	An(ex)	Ar(%)
1.	Rutilus rutilus (Linnaeus, 1758)	27	42.86	3	8.82		-
2.	Blicca bjoerkna (Linnaeus, 1758)	8	12.70	15	44.12	3	18.75
3.	Alburnus alburnus (Linnaeus, 1758)	15	23.81		-		-
4.	Carassius gibelio (Bloch, 1782)	1	1.59	11	32.35	7	43.75
5.	Hypophthalmichthys molitrix (Valenciennes, 1844)	1	1.59		-		-
6.	Gymnocephalus cernuus (Linnaeus, 1758)	1	1.59		-		-
7.	Gymnocephalus baloni Holcík & Hensel, 1974	8	12.70		-		-
8.	Perca fluviatilis Linnaeus,1758	1	1.59		-		-
9.	Ballerus sapa (Pallas, 1814)		-	2	5.88	3	18.75
10.	Chondrostoma nasus (Linnaeus, 1758)		-	1	2.94		-
11.	Vimba vimba (Linnaeus, 1758)		-	1	2.94		-
12.	Cyprinus carpio carpio Linnaeus, 1758		-		-	1	6.25
13.	Leuciscus idus (Linnaeus, 1758)		-		-	1	6.25
14.	Pelecus cultratus (Linnaeus, 1758)		-	1	2.94		-
15.	Sander lucioperca (Linnaeus, 1758)		-		-	1	6.25
16.	Aspius aspius (Linnaeus, 1758)	1	1.59		-		-

Table 9 The relative abundance of the fish captured in Lake Beleu with stationary nets with mesh size of 20 mm, 30 mm and 40 mm (exposure time - 24 hours), April of 2013

Ecosystem of the Lake Beleu and those of the Lake Manta in the spring time turns into a spawning area of a primary importance for the reproduction of phytophylic and litophylic fish species from the lower sector of the Danube and Prut River, which, consequently, requires a more effective protection of this area during prohibition period.

The metric and gravimetric analysis of catchments of *Rutilus rutilus* put in evidence six individuals with an average length of 13.6 cm and an average body mass of 25.0 g, which ovaries were at the IV-V stages of maturation.

It was found that for the Lake Manta also are characteristic individuals of *Rutilus rutilus* with a slow rhythm of growth and early maturation (2 years). Presumably, in the particular habitat conditions of the Lake Beleu and Lake Manta (temperature high alternations, unstable hydrological regime, etc.), some species of euribiontic fishes, e.g. *Carassius gibelio* and *Rutilus rutilus*, have developed some idioadaptive features, which allowed them to build some ecotipic local populations, characterized by early maturation and slow growing rhythm.

The relative abundance of the fish species caught in Costesti-Stinca reservoir in April 2013 with stationary nets with mesh size of 20 mm, 30 mm and 40 mm it is presented in Table 10.

Spring of 2013 debuted by low temperatures followed by a sharp warming since mid April, because of this breeding period of most fish species with early reproduction (*Aspius aspius, Perca fluviatilis*) and relatively early reproduction (*Sander lucioperca, Abramis brama, Rutilus rutilus*) has occurred about 2 weeks later as usual.

Thus, if on 27-29 March the water temperature in the lower sector of lake was only 2.5°C, then on 25-28 April it increased up to 12.3°C. Fish were concentrated in the littoral zone, *Rutilus rutilus* was in the middle of reproduction process, the majority of adults having ovaries in the stage V of development.

Starting with the end of May of 2013, it was planed the use of trammel for juvenile ((l=5 m) for the investigation of the Prut River ichthyofauna, which allowed to supplement the list with diverse species with short life cycle (*Gobiidae, Cobitidae, Gasterosteida, etc.*).

		Ø 20 mm	n, l=50 m	Ø 30 mm	n, 1=50	Ø 40 mm, l=100 m and h=3 m	
	Species	and h=2	m	m and h=3 m			
		An(ex)	Ar(%)	An(ex)	Ar(%)	An(ex)	Ar(%)
1.	Rutilus rutilus (Linnaeus, 1758)		85.96	79	87.78	15	48.39
2.	Blicca bjoerkna (Linnaeus, 1758)		-		-		-
3.	Alburnus alburnus (Linnaeus, 1758)	4	7.02		-		-
4.	Carassius gibelio (Bloch, 1782)		-		-	3	9.68
5.	Hypophthalmichthys molitrix (Valenciennes, 1844)		-		-		-
6.	Gymnocephalus cernuus (Linnaeus, 1758)		-		-		-
7.	Gymnocephalus baloni Holcík & Hensel, 1974		-		-		-
8.	Perca fluviatilis Linnaeus,1758		-	1	1.11		-
9.	Ballerus sapa (Pallas, 1814)		-		-		-
10.	Chondrostoma nasus (Linnaeus, 1758)		-		-		-
11.	Vimba vimba (Linnaeus, 1758)	2	3.51		-	1	3.23
12.	Cyprinus carpio carpio Linnaeus, 1758		-		-	2	6.45
13.	Leuciscus idus (Linnaeus, 1758)		-		-		-
14.	Pelecus cultratus (Linnaeus, 1758)		-		-		-
15.	Sander lucioperca (Linnaeus, 1758)		-	4	4.44	2	6.45
16.	Aspius aspius (Linnaeus, 1758)		-		-	1	3.23
17.	Squalius cephalus (Linnaeus, 1758)	1	1.75		-		-
18.	Abramis brama (Linnaeus, 1758)	1	1.75	6	6.67	7	22.58

Table 10 The relative abundance of the fish captured in Costesti-Stinca reservoir with stationary nets with mesh size of 20 mm, 30 mm and 40 mm (exposure time - 24 hours), April of 2013

As result of ichthyological investigations, the Prut River macroecosystem was conventionaly divided into a few piscicolous zones represented by characteristic species and distinct hydrobiotopes:

I. Zone of thresholds and fords with fast flow. Substrate is made by sand, gravel or stones. Zone demonstrates an intermittent spatial distribution and it is places mainly in the Middle Prut (within

the borders of the Republic of Moldova) and downstream the Costesti-Stinca dam (till the area of Ungheni town). Typical representatives are: *Alburnoides bipunctatus, Alburnus alburnus, Chondrostoma nasus, Squalius cephalus, Barbus barbus, Romanogobio kesslerii, Neogobius fluviatilis* etc.

II. Zone of river bed with slow flow, deep water with low transparency. It is the largest zone, places in the both sectors of the Prut River till the confluence with the Danube. Typical representatives are: *Silurus glanis, Abramis brama, Aspius aspius, Sander lucioperca, Vimba vimba, Ballerus sapa, Barbus barbus, Gymnocephalus cernua, Alburnus alburnus* etc. *Blicca bjoerkna, Leuciscus idus,* and *Pelecus cultratus* are characteristic only for Lower Prut.

III. Zone of Costesti-Stinca reservoir. Typical representatives are: *Abramis brama, Rutilus rutilus, Perca fluviatilis, Aspius aspius, Sander lucioperca, Alburnus alburnus, Cyprinus carpio carpio,* Asian cyprinides etc.

IV. Zone of Beleu natural lake and Manta swamp. Typical representatives are: *Carassius gibelio, Rutilus rutilus, Blicca bjoerkna, Alburnus alburnus,* species of *Gymnocephalus, Cyprinus carpio carpio,* Asian cyprinides. In the period of reproduction and of high floods the species structure is strongly influenced by ichthyocenosis of the Danube and the Prut River.

V. Zone of isolated surfaces with microdepresions (water-meadows, branches, channels etc.), which are temporary or permanently covered by water. The water supply is due to the floods on the Prut River. Typical representatives are: *Carassius gibelio, Lepomis gibbosus, Rhodeus amarus, Pseudorasbora parva, Perca fluviatilis, Alburnus alburnus, Rutilus rutilus,* fry of *Esox Lucius etc.*

Among eurybionte, generalist, with high ecological valence and high density species of the Prut River macroecosystem should be mentioned: *Alburnus alburnus* – abudent in both of the Prut River sectors (middle and lower) and in all piscicolous zones (I, II, III, IV, V); *Perca fluviatilis*– has become especially numerous in the middle sector (II, III) and in the flooded microdepressions and isolated braches from the river valley (V); *Rutilus rutilus*– eudominant and euconstant species almost in all piscicolous zones of the Prut River (II, III, IV, V), *Carassius gibelio* - non-native invasive species, extremely numerous in stagnant, not deep waters with rich aquatic vegetation (IV, V); *Blicca bjoerkna* and *Gymnocephalus cernuus* – suddenly increased the density in hydrobiotops of the river bed and in Beleu natural lake and Manta swamp, including supply chanels (II, IV). A range of species with short life cycle as *Neogobius fluviatilis, Neogobius gymnotrachelus, Rhodeus amarus, Pseudorasbora parva* etc., have demonstrated high abundence in littoral habits, but with variable frequency even in the same piscicolous zone.

Thus, *Squalius cephalus, Chondrostoma nasus* and *Alburnoides bipunctatus* are frequently registerd in zone of river bed and tributaries of the Middle Prut (Fig.15).

Fig. 15 Chub *(Squalius cephalus)* - reophyle species, relatively rare, but bumerous in the Middle Prut and its tributaries (Picture- Bulat Dm.and Bulat Dn., 2013)

Opposite, *Leuciscus idus, Pelecus cultratus, Alosa tanaica* and *Gymnocephalus baloni* (new species for the Republic of Moldova) are characteristic for pisciculous zone of lower sector (Fig.16).

Fig.16 Orfe *(Leuciscus idus)* - within the boundaries of the Republic of Moldova is registered only in the Lower Prut and its tributaries (Picture- Bulat Dm.and Bulat Dn., 2013)

In Costesti-Stinca reservoir *Vimba vimba* and *Barbus barbus* became frequente after the heavy floods of 2008 and 2010 (Fig.17)

Fig. 17 Vimba bream (*Vimba vimba*) – vulnerable species, which became common in captures from Costesti-Stinca reservoir after the floods of 2008 and 2010 (Picture- Bulat Dm.and Bulat Dn., 2013)

In some hydrobiotops of the Middle Prut and its tributaries (within the territory of the Republic of Moldova) a range of extremely rare representatives of autochthonous fish fauna were identified: *Barbatula barbatula* (Larga River), *Misgurnus fossilis* (Lopatnic River), *Gymnocephalus*

schraetser (confluence of the Lopatnic River with the Prut River) and *Cobitis elongatoides* (Lopatnic and Vilia rivers) (Fig.18).

Fig. 18 Stone loach (*Barbatula barbatula*) – registerd only in clean waters, with fast stream and hard substrate (Picture- Bulat Dm.and Bulat Dn., 2013)

Perccottus glenii, alien naturalized species, which previously was registered only in tributaries of the Prut River from the north part of Moldova, currently is captured also in bed of the Middle Prut, including Costesti-Stinca reservoir, this fact requiring the recognition of a dangerous situation for functionality of recipient ichthyocenoses (Fig. 19).

Fig.19. Chinese sleeper, or Amur sleeper (*Perccottus glenii*) – invasive alien species (left down), registerd in the Middle Prut (Picture- Bulat Dm.and Bulat Dn., 2013)

Assessment of ecological indices of fish species, which were captured with trammel in different piscicolous zones in spring-summer of 2013 are presented in Table 11. The values of ecological indices are directly dependent by fish ecological preferences. In all cases there is a well expressed spatial distribution, dependent of hydrobiotopic preferencies of specimens and conservation status of investigated habitats.

For the next period of researches the structural-functional analysis of fish populations from the macroecosystem of the Prut River is planned. The age and sex structures, growing rithm, lengthweight correlation, prolificity, spawning period, matuiration period will be evaluated.

Table 11 Diversity and relative abundance of fish species from the middle sector of the Prut River bed and Costesti-Stinca reservoir, captured by trammel for juvenils in spring-summer of 2013												
Species	Zone of thresholds and fords with fast flow				Zone of river bed with slow flow				Zone of littoral of Costesti-Stinca reservoir			
Species		T (0 ()	~ ~ ~ ~ ~ ~ ~	*** (0 ()		T (0 ()	G (0 ()			T (0 ()	<i>G</i> (0 ()	

	Species		Zone of thresholds and fords with fast flow				Zone of river bed with slow flow				Zone of littoral of Costesti-Stinca reservoir			
			D(%)	C (%)	W (%)	An(ex)	D(%)	C (%)	W (%)	An(ex)	D(%)	C (%)	W (%)	
1.	Esox lucius (Linnaeus, 1758)	-	-	-	-	6	1.20	12	0.14	3	0.48	4	0.019	
2.	Cyprinus carpio carpio (Linnaeus, 1758)	-	-	-	-	2	0.40	4	0.02	5	0.79	8	0.064	
3.	Carassius gibelio (Bloch, 1782)	-	-	-	-	15	3.01	20	0.60	13	2.07	16	0.331	
4.	Barbus barbus (Linnaeus, 1758)	10	2.45	16	0.39	7	1.41	12	0.17	5	0.79	8	0.064	
5.	Barbus petenyi (Heckel, 1852)	1	0.25	2	0.005	-	-	-	-	-	-	-	-	
6.	Chondrostoma nasus (Linnaeus, 1758)	6	1.47	10	0.15	1	0.20	2	0.004	1	0.16	2	0.003	
7.	Gobio gobio (Linnaeus, 1758)	-	-	-	-	3	0.60	4	0.02	5	0.79	8	0.064	
8.	Romanogobio vladykovi (Fang, 1943)	4	0.98	6	0.06	-	-	-	-	-	-	-	-	
9.	Romanogobio kesslerii (Dybowski, 1862)	7	1.72	10	0.17	3	0.60	4	0.02	-	-	-	-	
10.	Pseudorasbora parva (Temminck & Schlegel, 1846)	-	-	-	-	7	1.41	8	0.11	9	1.43	8	0.114	
11.	Abramis brama (Linnaeus, 1758)	1	0.25	2	0.005	14	2.81	24	0.67	14	2.23	24	0.534	
12	Ballerus sapa (Pallas, 1814)	-	-	-	-	6	1.20	10	0.12	2	0.32	4	0.013	
13.	Vimba vimba (Linnaeus, 1758)	6	1.47	10	0.15	4	0.80	8	0.06	4	0.64	8	0.051	
14.	Rutilus rutilus (Linnaeus, 1758)	4	0.98	8	0.08	21	4.22	28	1.18	64	10.17	68	6.919	
15.	Rhodeus amarus (Bloch, 1782)	5	1.23	8	0.10	44	8.84	44	3.89	34	5.41	34	1.838	
16.	Aspius aspius (Linnaeus, 1758)	14	3.43	12	0.41	45	9.04	50	4.52	83	13.20	70	9.237	
17.	Squalius cephalus (Linnaeus, 1758)	17	4.17	28	1.17	10	2.01	18	0.36	4	0.64	8	0.051	
18.	Scardinius erythrophthalmus (Linnaeus, 1758)	-	-	-	-	1	0.20	2	0.004	1	0.16	2	0.003	
19.	Hypophthalmichthys molitrix (Valenciennes, 1844)	-	-	-	-	1	0.20	2	0.004	6	0.95	6	0.057	
20.	Hypophthalmichthys nobilis (Richardson, 1845)	-	-	-	-	-	-	-	-	1	0.16	2	0.003	
21	Ctenopharyngodon idella (Valenciennes, 1844)	1	0.25	2	0.005	-	-	-	-	-	-	-	-	
22.	Leucaspius delineatus (Heckel, 1843)	3	0.74	4	0.03	3	0.60	4	0.02	3	0.48	4	0.19	
23.	Alburnus alburnus (Linnaeus, 1758)	166	40.69	92	37.43	109	21.89	92	20.14	142	22.58	86	19.415	
24.	Alburnoides bipunctatus (Bloch, 1782)	47	11.52	46	5.30	12	2.41	14	0.34	-	-	-	-	
25.	Cobitis taenia (Linnaeus,1758)	6	1.47	8	0.12	6	1.20	10	0.12	3	0.48	6	0.029	
26.	Cobitis elongatoides (Bacescu et Maier, 1969)	-	-	-	-	3	0.60	2	0.01	-	-	-	-	
27.	Sabanejewia balcanica (Karaman, 1922)	1	0.25	2	0.005	1	0.20	2	0.004	-	-	-	-	
28.	Misgurnus fossilis (Linnaeus, 1758)	-	-	-	-	1	0.20	2	0.004	1	0.16	2	0.003	
29.	Silurus glanis (Linnaeus, 1758)	1	0.25	2	0.005	5	1.00	10	0.10	1	0.16	2	0.003	
30.	Lota lota (Linnaeus, 1758)	-	-	-	-	1	0.20	2	0.004	-	-	-	-	
31.	Pungitius platygaster (Kessler, 1859)	-	-	-	-	2	0.40	4	0.02	2	0.32	2	0.006	
32.	Perca fluviatilis (Linnaeus,1758)	40	9.80	36	3.53	82	16.47	66	10.87	92	14.63	62	9.068	
33.	Sander lucioperca (Linnaeus, 1758)	11	2.70	16	0.43	28	5.62	38	2.14	37	5.88	42	2.471	
34.	Gymnocephalus cernua (Linnaeus, 1758)	26	6.37	26	1.66	22	4.42	24	1.06	46	7.31	36	2.633	
35.	Gymnocephalus schraetser (Linnaeus, 1758)	1	0.25	2	0.005	-	-	-	-	-	-	-	-	
36.	Neogobius gymnotrachelus (Kessler, 1857)	-	-	-	-	15	3.01	16	0.48	2	0.32	4	0.013	
37.	Proterorhinus semilunaris (Heckel, 1837)	-	-	-	-	2	0.40	2	0.01	2	0.32	2	0.006	
38.	Neogobius fluviatilis (Pallas, 1814)	30	7.35	26	1.91	13	2.61	10	0.26	42	6.68	26	1.736	
39.	Perccottus glenii (Dybowski, 1877)	-	-	-	-	3	0.60	6	0.04	2	0.32	4	0.013	
	Total	408	100	-	-	498	100	-	-	629	100	-	-	

D.1.3 River Prut hydrochemical characteristics investigation

Field samples collection and their chemical analyses were performed according to established methods in hydrochemistry and hydrobiology (Abakumov, 1983; Semenov, 1977). Dissolved oxygen was determined by iodometric method, which was adapted to ISO 5813:1993; this method includes the fixation of samples directly in the field.

Content of hydrocarbonate (HCO3⁻) and carbonate (CO3²⁻) ions or alkalinity was determined by titration classical method, which also corresponds to ISO 9963-1:1994 and 9963-2:1994. Chlorides were investigated by silvermetric titration method in accordance with ISO 9297:1989. Sulphate ion concentration (SO₄²⁻) was determined by gravimetric method using barium chloride according to ISO 9280:1990. Determination of calcium and magnesium total content or water hardness, as well as of calcium ions was carried out by complexometric EDTA-titrimetric method (ISO 6059:1989 and 6058:1984). Content of magnesium ions (Mg²⁺) was calculated as the difference between hardness values and content of calcium ions. In the case of sodium and potassium ions, the method of Semenov (1977) was used, but some samples were analysed by atomic absorption method - ISO 9964-2:1993.

Nutrients $(N-NH_4^+, N-NO_2^-, N-NO_3^-, mineral P)$ were investigated by using classical spectrometric methods, which complies to a range of standards: ISO 7150-1:1984, ISO 6777:1984, ISO 7890-3:1988, ISO 6878:2004.

Chemical composition. Investigations have shown that in summer of 2012 the dissolved oxygen content was relatively satisfactory for hydrobiont development, its concentration ranging within 7.86 and 8.86 mg/l, or 90.4 to 101% of saturation at a water temperature of 21.2- 25.8°C; in autumn of 2012 - winter of 2013, at water temperatures of 5-16.4°C, the water saturation with oxygen varied between 77-98.5%, in spring of 2013 - between 90.7- 113.9%, in summer of 2013 - between 68.2- 138%, these values being favourable for hydrobiont development (Table 12).

		O ₂								
Station	t,°C	mg/l	% saturation							
June 2012										
Costesti-Stinca reservoir, next to the dam	23.5	8.82	100.3							
Braniste	24.0	8.86	101.1							
Sculeni	21.5	8.95	97.9							
Leova	25.0	8.38	97.2							
Cahul	25.8	7.93	93.2							
Cislita	25.6	7.86	92.0							
Giurgiulesti	25.6	7.85	91.8							
August 2012										
Costesti-Stinca	22.3	8.57	95.5							
Braniste	22.6	8.31	93.1							
Sculeni	22.6	8.07	90.4							
Leuseni	21.2	8.66	94.7							
Leova	22.4	8.47	94.6							
Cahul	23.4	8.19	93.0							
Cislita	23.0	8.26	93.2							
Giurgiulesti	23.2	8.00	90.5							
	tober 2012									
Costesti-Stinca reservoir, next to the dam	16.4	9.47	94.7							

Table 12 Dynamics of dissolved oxygen, mg/l and % of saturation, in the waters of the PrutRiver and Costesti-Stinca reservoir (next to the dam), June 2012- August 2013

Braniste	16.2	9.89	98.5
Sculeni	16.2	9.86	98.2
Leuseni	15.0	9.99	97.2
Leova	13.4	9.94	93.7
Cahul	15.0	9.58	93.2
Cislita	15.6	9.16	90.2
Giurgiulesti	16.2	9.07	90.4
	nber 2012	0.07	77.0
Costesti-Stinca reservoir, middle sector Costesti-Stinca reservoir, lower sector	5.0 5.0	9.87 9.93	77.0 77.5
	uary 2013	9.95	11.5
Costesti-Stinca reservoir, lower sector	2.0	14.58	105.3
Braniste	2.4	14.1	102.9
Sculeni	1.8	14.09	101.2
Cahul	0.8	12.75	89.2
Cislita	1.2	13.28	93.9
Giurgiulesti	1.2	13.38	94.5
	rch 2013		
Costesti-Stinca reservoir, lower sector	4.2	13.28	101.6
Braniste	5.0	13.46	105.0
Sculeni	6.0	12.94	103.4
Leovo	7.4	11.78	97.3
Leuseni	7.8	11.94	99.5
Cahul	9.0	11.14	95.5
Cislita	9.6	11.46	99.6
Giurgiulesti	10.0	10.35	90.7
Ар	ril 2013		
Costesti-Stinca reservoir, lower sector	13.8	11.75	111.6
Braniste	10.6	11.71	103.9
Sculeni	11.0	11.14	99.8
Leuseni	12.6	10.16	94.2
Leova	12.5	10.04	92.9
Cahul	14.4	9.76	93.8
Cislita	17.0	11.25	113.9
Giurgiulesti	16.4	9.55	95.5
	ay 2013		
Costesti-Stinca reservoir, lower sector	21.6	8.95	98.5
Braniste	21.8	9.21	101.8
Sculeni	19.4	8.54	90.4
Leuseni	20.0	8.05	86.1
Leova	21.0	8.10	88.2

Cahul	22.2	7.45	82.9
Cislita	20.8	6.28	68.2
Giurgiulesti	22.4	8.30	92.7
•	ne 2013	I I	
Costesti-Stinca reservoir, lower sector	27.0	11.47	138.0
Braniste	21.0	7.14	77.7
Sculeni	24.6	8.10	93.7
Leuseni	25.0	7.30	85.1
Leova	25.4	7.25	85.2
Cahul	27.2	7.10	85.7
Cislita	28.0	7.62	93.1
Giurgiulesti	28.2	4.71	57.8
Ju	ly 2013		
Criva (Prut River)	23.5	8.84	100.7
Tetcani (Prut River)	25.9	8.50	100.6
Badragii Noi (Costesti-Stinca reservoir, upper sector)	25.6	7.83	92.1
Duruitoarea Noua (Costesti-Stinca reservoir,			
middle sector)	25.4	8.25	96.9
Costesti-Stinca reservoir, lower sector	25.2	8.58	100.4
Braniste	25.4	7.88	92.5
Sculeni	25.8	8.65	102.1
Leuseni	25.4	8.15	95.7
Leova	26.0	7.97	94.5
Cahul	26.2	7.80	92.7
Cislita	26.4	6.62	78.9
Giurgiulesti	26.8	6.33	76.0
Aug	ust, 2013	I I	
Costesti-Stinca reservoir, lower sector	26.4	11.08	132.1
Braniste	25.2	6.92	81.0
Sculeni	25.0	8.47	98.7
Leuseni	25.3	8.12	95.1
Leova	25.4	8.34	97.9
Cahul	27.0	7.38	88.8
Cislita	27.3	6.97	84.2
Giurgiulesti	28.2	6.87	84.2

Suspensions have an important role in the functioning of aquatic ecosystems, especially in their self-cleaning processes. Namely to suspensions belongs the role to adsorb a range of dissolved substances, including pollutant ones, and to store them in bottom sediments. The high contents of suspensions diminish the intensity of photosynthesis process, influence the processes of production and destruction of organic matter and have a negative impact on planktonic organisms (Zubcov et al., 2009; Zubcov, Ungureanu, Munjiu, 2005).

The quantity of suspensions in the Prut River varied in a quite large diapason- from 2 mg/l to 204 mg/l. The dynamics of suspensions in the Prut River is highly dependent on its right tributary – Bahlui River, which provokes the increase of their content by ten times in the Prut River on the Leuseni- Cislita-Prut sector. At Giurgiulesti station, in the zone of small water speed, the most of suspensions are stored in silts (Table 13).

Table 13 Dynamics of mineral (S_{min}) , organic (S_{org}) and total (S_{total}) suspensions in Costesti-Stinca reservoir and the Prut River, June of 2012-August of 2013, mg/l

Station		C	C
Station	ne 2012	S_{org}	S _{total}
Costesti-Stinca reservoir, next to the dam	0.4	2.4	2.8
Braniste	1.2	0.6	1.8
Leova	48.8	20	68.8
Cahul	67.2	8.6	75.8
Cislita	152	27	179
Giurgiulesti	47.2	6.8	54
	August 2012		-
Costesti-Stinca reservoir	2.8	0.8	3.6
Braniste	0.4	0.4	0.8
Sculeni	2	0.4	2.4
Leuseni	66	8	74
Leova	73.2	13.2	86.4
Cahul	88.8	67.6	156.4
Cislita	118.8	10.4	129.2
Giurgiulesti	77.2	8.4	85.6
	October 2012		
Costesti-Stinca reservoir, next to the dam	0.8	0.4	1.2
Braniste	0.4	0.4	0.8
Sculeni	2	1.2	3.2
Leuseni	46	1.6	47.6
Leova	49.2	9.2	58.4
Cahul	62.5	1.5	64
Cislita	58	12	70
Giurgiulesti	40	3.2	43.2
	ember 2012	1	1
Costesti-Stinca reservoir, middle sector	0.4	0.4	0.8
Costesti-Stinca reservoir, lower sector	0.4	0.4	0.8
	uary 2013		
Costesti-Stinca reservoir, lower sector	0.8	0.4	1.2
Braniste	0.4	0.01	0.41
Sculeni	4.4	0.03	4.43
Cahul	42.4	0.01	42.41
Cislita	16.8	4.8	21.6
Giurgiulesti	5.8	4.6	10.4
0	rch 2013		

Costesti-Stinca reservoir, lower sector	0.4	2	2.4
Braniste	2.8	1	3.8
Sculeni	1.6	0.8	2.4
Leova	100.4	4.8	105.2
Leuseni	26.8	1.2	28
Cahul	7.0	1.4	8.4
Cislita	1.2	0.4	1.6
Giurgiulesti	2.4	1.6	4
Apr	il 2013		
Costesti-Stinca reservoir, lower sector	2.8	0.4	3.2
Braniste	2.4	0.4	2.8
Sculeni	46.4	1.6	48
Leuseni	130.8	12.8	143.6
Leova	194.8	24	218.8
Cahul	228.2	21.4	249.6
Cislita	3.6	0.8	4.4
Giurgiulesti	10.4	0.8	11.2
	y 2013		
Costesti-Stinca reservoir, lower sector	1.20	19.6	20.8
Braniste	0.80	0.4	1.2
Sculeni	2.80	0.4	3.2
Leuseni	14.40	2.4	16.8
Leova	70.80	34	104.8
Cahul	132.20	59	191.2
Cislita	185.20	18.8	204
Giurgiulesti	53.20	6.4	59.6
Jun	e 2013		
Costesti-Stinca reservoir, lower sector	2.8	0.8	3.6
Braniste	2.8	0.8	3.6
Sculeni	24.8	0.8	25.6
Leuseni	87.6	10	97.6
Leova	104.4	13.6	118
Cahul	135.4	8.6	144
Cislita	6.8	0.8	7.6
Giurgiulesti	25.2	0.8	26
Jul	y 2013		
Criva (Prut River)	16,0	0,5	16,5
Tetcani (Prut River)	31,0	1,5	32,5
Badragii Noi (Costesti-Stinca reservoir, upper sector)	293,5	32,0	325,5

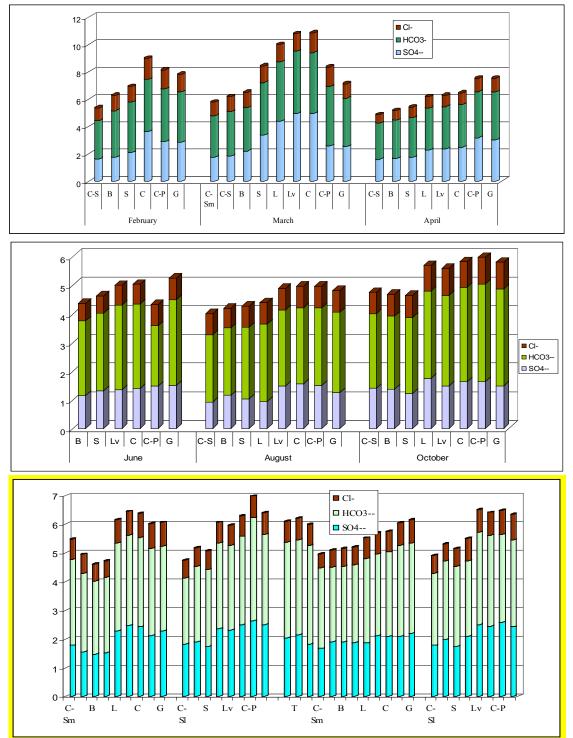
Duruitoarea Noua (Costesti-Stinca			
reservoir, middle sector)	56,5	4,0	60,5
Costesti-Stinca reservoir, lower sector	3,6	0,4	4,0
Braniste	2,4	0,4	2,8
Sculeni	36,0	0,8	36,8
Leuseni	59,8	1,0	60,8
Leova	89,4	24,6	114,0
Cahul	153,4	8,2	161,6
Cislita	182,8	16,4	199,2
Giurgiulesti	231,7	18,3	250,0
Au	gust, 2013		
Costesti-Stinca reservoir, lower sector	2	0.4	2.4
Sculeni	3.6	0.8	4.4
Leuseni	31.6	2	33.6
Leova	51.2	7.2	58.4
Cahul	50.2	3.4	53.6
Cislita	125.6	12.4	138
Giurgiulesti	142	15.2	157.2

Mineralization, as well as the content of main ion, are conservative indices and depend mostly by natural factors. It is known that water mineralization has decreasing during floods and has increasing during low flows. In 2012 it was observed a light increase of mineralization and major ions content, but not so pronounced and their values were within those multiannuals. In 2013 it was observed an evident increase of concentration of sulfates, sodium and potassium ions at Cahul station in February and on the sector Leuseni-Cahul in March (Table 14).

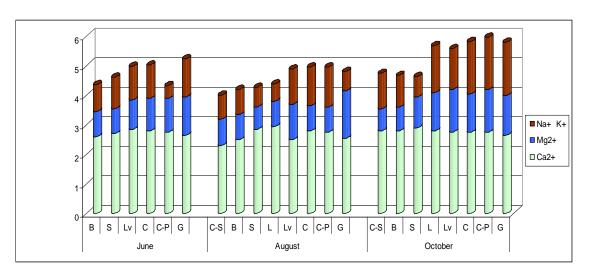
Table 14 Dynamics of hydr	ogen carbo	nate, sulfat	te, chloride,	calcium	n, magne	esium, soo	lium and potassiur	m
ions and mineralization in the	ne waters of	of Prut Rive	er and Cost	esti-Stin	ca reser	voir, June	of 2012-August of	of
2013, mg/l								

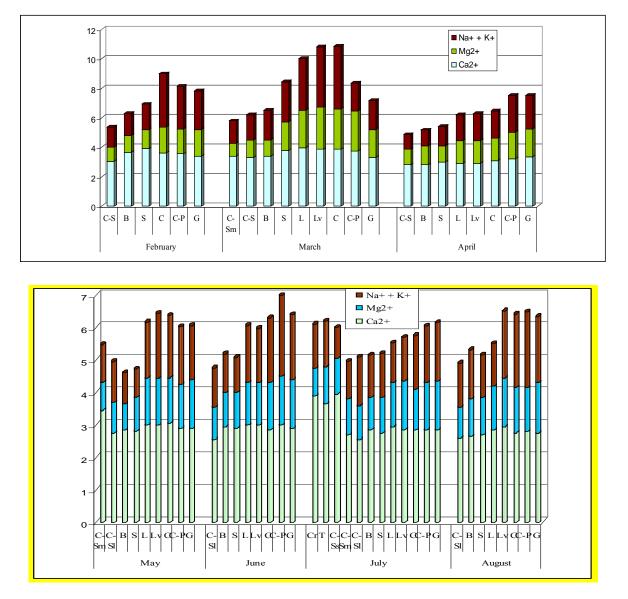
Station	SO4 ²	HCO ₃ -	Cl	Ca ⁺⁺	Mg ⁺⁺	Na ⁺ +K	Mineralization
		Ju	ine 2012				
Braniste	55.1	158.7	21.7	52.1	10.3	22.8	320.7
Sculeni	63.4	164.8	21.3	54.1	10.3	26.8	340.7
Leova	64.2	180.0	24.5	57.1	12.1	28.5	366.4
Cahul	66.7	180.0	24.5	56.1	13.4	28.3	369.0
Cislita	71.2	180.0	26.6	55.1	13.9	10.8	357.6
Giurgiulesti	72.4	181.5	26.6	53.1	15.8	32.3	381.7
		Au	gust 2012				
Costesti-Stinca	44.4	143.4	26.2	46.1	10.9	20.3	291.3
Braniste	55.9	143.4	24.6	50.1	10.3	21.3	305.6
Sculeni	49.4	152.6	26.2	57.1	9.1	16.8	311.2
Leuseni	45.3	164.8	26.6	59.1	10.3	14.8	320.9
Leova	71.6	161.7	26.6	50.1	14.6	29.8	354.4
Cahul	69.9	161.7	26.6	56.1	10.3	32.8	357.4

Cislita	72.4	164.8	26.6	55.1	10.3	34	363.2		
Giurgiulesti	60.1	170.9	26.9	51.5	19.5	16.5	345.4		
October 2012									
Costesti-Stinca, next to			0001 2012						
the dam	67.5	158.7	26.6	56.1	9.1	30.0	348.0		
Braniste	65.8	155.6	26.9	56.1	9.7	27.0	341.1		
Sculeni	59.3	161.7	26.9	58.1	12.8	17.3	336.1		
Leuseni	83.9	186.1	31.8	56.1	15.8	39.8	413.5		
Leova	71.6	192.2	33.3	55.1	17.6	34.5	404.3		
Cahul	78.2	201.4	31.8	55.1	15.8	44.3	426.6		
Cislita	79.0	207.5	32.9	55.1	17.6	44.3	436.4		
Giurgiulesti	71.6	205.9	32.9	53.1	16.4	45.0	424.9		
		Dece	mber 2012						
Costesti-Stinca, middle sector	92.2	175.4	32.2	62.1	10.3	44.0	416.2		
Costesti-Stinca, lower		1 = 5 4		(2.1	10.0	10 0			
sector	92.2	175.4	32.2	63.1	10.3	42.8	416.0		
Costesti-Stinca, lower		Febi	ruary 2013						
sector	170.9	78.19	32.9	61.1	11.6	34.0	388.7		
Braniste	207.5	83.95	40.1	73.2	13.9	37.0	455.7		
Sculeni	219.7	100.41	40.5	78.2	15.8	43.0	497.6		
Cahul	233.4	174.48	53.9	72.1	21.3	90.8	645.9		
Cislita	234.9	139.09	49.2	71.1	20.7	72.0	586.9		
Giurgiulesti	224.3	136.62	46.1	68.1	21.9	65.3	562.3		
			urch 2013						
Costesti-Stinca, middle									
sector	184.6	88.4	35.3	68.1	10.3	38.3	425.0		
Costesti-Stinca, lower sector	198.3	88.9	38.4	66.1	14.6	42.0	448.3		
Braniste	193.7	106.2	39.2	68.1	13.4	50.0	470.6		
Sculeni	234.9	176.1	43.1	76.2	23.1	68.3	621.7		
Leuseni	265.4	209.9	45.4	79.2	31	87.5	718.4		
Leovo	277.6	238.7	45.4	77.2	34.7	102.3	775.9		
Cahul	271.5	238.7	50.5	77.2	33.4	102.5	777.3		
Cislita	265.4	124.3	50.5	75.2	32.8	47.8	596.0		
Giurgiulesti	215.1	121.3	37.6	66.1	23.1	100.3	564.4		
Stargiaresta	210.1		oril 2013	00.1	23.1	100.5	20111		
Costesti-Stinca, lower			2012						
sector	161.7	76.5	21.9	56.1	12.8	25.3	354.3		
Braniste	170.9	79.8	25.2	56.1	15.8	26.8	374.6		
Sculeni	176.9	84.8	26.9	60.1	13.4	33.0	395.1		
Leuseni	187.9	109.5	29.1	58.1	18.8	43.3	446.7		
Leova	189.2	113.6	29.1	58.1	18.8	45.8	454.6		
Cahul	192.2	118.5	29.4	62.1	18.2	46.3	466.7		
Cislita	206.3	152.3	34.4	64.1	21.9	63.0	542.0		
Giurgiulesti	213.6	145.7	35.1	67.1	23.1	56.8	541.4		


May 2013 Costesti-Stinca, middle 181.5 85.6 69.1 10.3 29.3 401.1 25.3 sector Costesti-Stinca, lower 166.3 74.9 23.5 55.1 11.6 31.3 362.7 sector 9.7 155.6 70.8 20.9 57.1 24 338.1 Braniste 72.4 344.0 160.2 20.7 56.1 12.8 21.8 Sculeni 445.8 186.1 110.3 28.9 60.1 17.6 42.8 Leuseni 49.8 467.4 192.2 118.5 29.2 60.1 17.6 Leovo 189.2 116.9 29.8 61.1 17 48 462.0 Cahul 101.2 30.5 58.1 44.3 436.6 Cislita 186.1 16.4 180 109.5 29.5 58.1 18.2 41.5 436.8 Giurgiulesti June 2013 Costesti-Stinca, lower 140.4 87.3 22.3 51.1 30 343.2 12.1 sector 161.7 90.9 59.1 12.8 377.3 23 29.8 Braniste 23 58.1 27.0 369.4 Sculeni 164.8 83.1 13.4 183.1 112.8 25.2 60.1 15.8 44.0 441 Leuseni 180 111.1 25.2 60.1 15.8 41.8 434 Leovo 458.4 187.6 120.2 25.9 57.1 17.6 50 Cahul 219.7 125.9 26.9 60.1 18.2 62 512.8 Cislita 119.8 49.8 464.7 192.2 26.6 58.1 18.2 Giurgiulesti July 2013 97.9 Criva (Prut River) 202.9 25.8 78.2 10.3 33.8 448.9 Tetcani (Prut River) 201.4 103.3 26.5 73.2 13.9 35 453.3 Badragii Noi (Costesti-Stinca reservoir, upper 208.9 87.7 79.2 23.8 439.6 sector) 26.6 13.4 Duruitoarea Noua (Costesti-Stinca reservoir, middle sector) 170.9 80.2 17.5 54.1 13.4 29 365.1 Costesti-Stinca, lower 158.7 91.4 21.1 51.1 12.8 37.3 372.4 sector 161.7 90.9 57.1 32.5 376.2 21.8 12.2 Braniste 55.1 379.3 164.8 89.7 22.5 Sculeni 13.4 33.8 180 89.3 25.3 59.1 16.4 30.5 400.6 Leuseni 173.9 101.2 26.2 57.1 18.2 33.3 409.9 Leovo 99.9 180 25.5 57.1 15.2 41.3 419 Cahul 440.7 193.8 100.8 27.6 57.1 17.6 43.8 Cislita Giurgiulesti 192.2 105.8 28.5 57.1 18.2 45 446.8 August 2013 Costesti-Stinca, lower 152.6 85.6 21.9 52.1 11.6 33.8 357.6 sector 166.3 95.1 21.8 53.1 13.9 38 388.2 Braniste 169.3 84.4 21.9 54.1 13.9 32.5 376.1 Sculeni 160.2 100.4 27.6 57.1 16.4 32.5 394.2 Leuseni 196.8 119.7 28.1 59.1 18.2 51.5 473.4 Leovo

${ m egin{array}{c} \mathbb{C}}$ Laboratory of Hydrobiology and Ecotoxicology, Institute of Zoology, Academy of Sciences of Moldova


©Laboratory of Hydrobiology and Ecotoxicology, Institute of Zoology, Academy of Sciences of Moldova


Cahul	192.2	117.7	28.8	55.1	17	56.5	467.3
Cislita	186.1	124.7	29.8	56.1	16.4	58.3	471.4
Giurgiulesti	184.6	116.9	31.3	55.1	18.8	51	457.7
			a : 1				

It was preserved the classical trend of mineralization growth along the river. In most cases, the water of the Prut River referred to the hydrogen carbonate class, group of calcium, type II, accordingly to classification of Alekin (Fig.15, 16).

Fig.15 Dynamics of hydrogen carbonate, sulfate and chloride ions in Costesti-Stinca reservoir, middle sector (C-Sm), next to the dam (C-S), and in the Prut River (B-Braniste, S-Sculeni, L-Leuseni, Lv-Leova, C-Cahul, C-P-Cislita-Prut, G-Giurgiulesti), June-October of 2012 and February-April of 2013, and May-August 2013 mg-ecv/l

Fig.16 Dynamics of calcium, magnesium, sodium and potassium ions in Costesti-Stinca reservoir, superior (C-Ss) middle sector (C-Sm), next to the dam (C-S), and in the Prut River (Cr- Criva, -Titcani, B-Braniste, S-Sculeni, L-Leuseni, Lv-Leova, C-Cahul, C-P-Cislita-Prut, G-Giurgiulesti), June-October of 2012, February-April of 2013, and May-August 2013 mg-ecv/l

It is known that the correlation between cations and anions is a basic indicator in the determining of surface water stability. The modification of water class reveals the existence of pollution or the water metamorphosis under the influence of some major factors. Accordingly to the Figures 15-16, in February and March of 2013 the increase of content of sulfate, sodium and potassium ions occurred. As result, in February of 2013 the waters of the Prut River referred to the hydrogen carbonate-sulfate class, group of sodium-calcium, type II (Cahul) and to the sulfate class, group of sodium in March of 2013 (on the Leuseni-Cahul sector). Obviously, water mineralization also reached much higher values (Table 14), which, in fact, were three times higher compared to those from Costesti-Stinca reservoir, next to the dam.

The Prut waters, taking in account the composition of main ions, corresponded to the requirements on quality, which must be met by drinking water, and waters used in pisciculture and aquaculture.

The content of nutrients is one of the most important indicators of water quality, which determines both the development of several aquatic organisms, as well as trophicity level, intensity of production-destruction processes of aquatic ecosystems. The share of nitrates in the sum of forms of mineral nitrogen is 54-90%, of ammonium nitrogen -8.5 - 43%, and of nitrites -1.1-6.0% (Table 15).

As rule, in aquatic ecosystems the content of mineral nitrogen exceeds those of organic nitrogen. In 2012 in 25% of samples the share of mineral nitrogen in total nitrogen was equal to 25-44%, but in 2013 already in 30% of samples it varried between 6-38%. Thus, it is evident the tendency of increase of the organic nitrogen concentration (Table 15). The ratio between mineral and organic nitrogen is an integrated index that reflects not only nitrogen flow processes, but also the intensity of self-cleaning processes, secondary pollution and trophicity level of aquatic ecosystems.

Station	N-NH ₄	N-NO ₂	N-NO ₃	Nmin	Norg	Ntot				
June 2012										
Braniste	0.224	0.055	0.784	1.063	1.5	2.563				
Sculeni	0.228	0.039	0.741	1.008	0.324	1.332				
Leova	0.198	0.034	1.004	1.236	0.284	1.52				
Cahul	0.331	0.032	0.73	1.093	0.151	1.244				
Cislita	0.242	0.03	0.639	0.911	0.295	1.206				
Giurgiulesti	0.402	0.03	0.676	1.108	0.425	1.533				
		August 201	2							
Costesti-Stinca	0.176	0.032	0.327	0.535	0.251	0.786				
Braniste	0.146	0.029	0.338	0.513	0.239	0.752				
Sculeni	0.116	0.023	0.338	0.477	0.482	0.959				
Leușeni	0.317	0.017	0.596	0.93	0.495	1.425				
Leovo	0.346	0.023	0.601	0.97	0.181	1.151				
Cahul	0.246	0.037	0.736	1.019	0.637	1.656				
Cislita	0.25	0.031	0.725	1.006	0.633	1.639				
Giurgiulesti	0.205	0.032	0.719	0.956	0.892	1.848				
		October 201	2							
Costesti-Stinca, next to the dam	0.202	0.041	0.467	0.710	2.098	2.808				

Table 15 Dynamics of concentrations of ammonium (N- NH_4), nitrite (N- NO_2) and nitrate nitrogen (N- NO_3), of mineral (Nmin), organic (Norg) and total (Ntot) nitrogen in the waters of the Prut River and Costesti-Stinca reservoir, June of 2012-April of 2013, and May-August 2013, mg/l

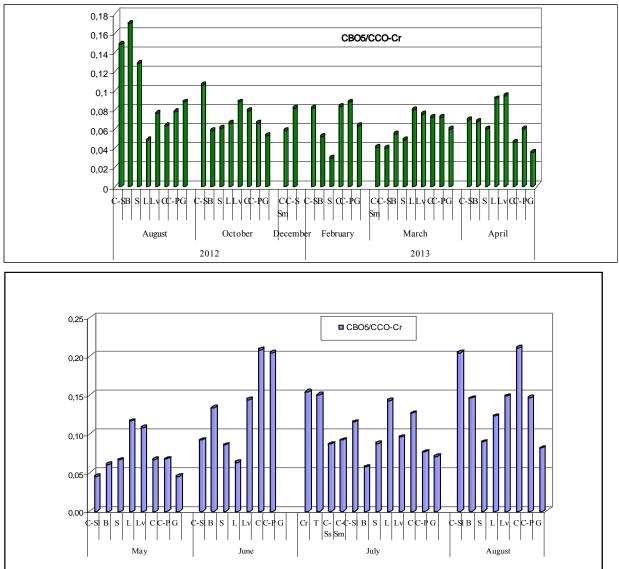
Braniste	0.265	0.028	0.413	0.706	0.344	1.050
Sculeni	0.190	0.028	0.424	0.642	0.622	1.264
Leuseni	0.343	0.031	0.908	1.282	1.619	2.901
Leova	0.380	0.030	1.091	1.501	1.852	3.353
Cahul	0.383	0.026	0.859	1.268	2.390	3.658
Cislita	0.536	0.027	0.924	1.487	1.020	2.507
Giurgiulesti	0.432	0.025	0.811	1.268	3.559	4.827
	Ι	December 20	12			
Costesti-Stinca, middle	0.461	0.034	0.832	1.327	0.357	1.684
sector Costesti-Stinca, lower	0.606	0.037	0.762	1.405	0.071	1.476
sector	0.000	0.057	0.702	1.405	0.071	1.470
	-	February 201	13			
Costesti-Stinca, lower			0.604	0.070		
sector	0.235	0.033	0.601	0.869	0.583	1.452
Braniste	0.424	0.026	0.671	1.121	0.805	1.926
Sculeni	0.435	0.036	1.091	1.562	0.863	2.425
Cahul	0.517	0.044	2.188	2.749	2.078	4.827
Cislita	0.502	0.052	2.086	2.64	2.511	5.151
Giurgiulesti	0.573	0.054	2.096	2.723	2.569	5.292
		March 2013	3			
Costesti-Stinca, middle sector	0.487	0.03	1.16	1.677	0.039	1.716
Costesti-Stinca, lower	0.107	0.05	1.10	1.077	0.057	1.,10
sector	0.629	0.033	0.956	1.618	1.145	2.763
Braniste	0.621	0.033	0.978	1.632	25.129	26.761
Sculeni	0.758	0.044	1.505	2.307	1.081	3.388
Leova	0.603	0.043	2.36	3.006	4.719	7.725
Leuseni	0.536	0.041	2.312	2.889	0.844	3.733
Cahul	0.231	0.031	2.435	2.697	14.419	17.116
Cislita	0.242	0.025	2.032	2.299	2.977	5.276
Giurgiulesti	0.302	0.024	1.93	2.256	6.596	8.852
		April 2013				
Costesti-Stinca, lower sector	0.476	0.052	1.817	2.345	3.69	6.035
Braniste	0.502	0.042	1.564	2.108	0.44	2.548
Sculeni	0.506	0.038	1.623	2.167	6.08	8.247
Leova	0.428	0.049	1.801	2.278	3.81	6.088
Leuseni	0.383	0.048	1.822	2.253	0.41	2.663
Cahul	0.532	0.067	1.774	2.373	1.27	3.643
Cislita	0.313	0.052	1.203	1.568	5.33	6.898
Giurgiulesti	0.614	0.051	1.37	2.035	2.87	4.905
		May 2013				
Costesti-Stinca, lower		2		1	0.100	• • • • •
sector	0.61	0.059	1.311	1.98	0.409	2.389
Braniste	0.565	0.059	1.37	1.994	0.413	2.407
Sculeni	0.545	0.053	1.354	1.952	0.406	2.358
Leova	0.239	0.054	1.74	2.033	1.253	3.286

Leuseni 0.254 0.049 1.68 1.986 5.725 7.711 Cahul 0.235 0.036 1.74 2.011 3.23 5.241 Cislita 0.335 0.046 1.08 1.461 4.625 6.086 Giurgiulesti 0.294 0.059 1.02 1.373 2.967 4.34 June 2013Costesti-Stinca, middlesector 0.499 0.041 0.875 1.415 0.646 2.061 Costesti-Stinca, lowersector 0.69 0.018 1.241 1.949 0.522 2.471 Braniste 0.16 0.013 1.139 1.312 1.119 2.431 Sculeni 0.02 0.014 1.28 1.314 3.549 4.863 Casulant 0.02 0.014 1.28 1.314 3.549 4.863 Casulant 0.02 0.014 0.47 0.504 6.446 6.955 Cisitia 0.01 0.024 0.65 0.684 5.917 6.601 Giurgiulesti 0.499 0.041 0.875 1.415 0.646 0.971 Costesti-Stinca 0.002 0.005 0.507 0.644 0.971 Costesti-Stinca 0.002 0.005 0.507 0.644 0.971 Costesti-Stinca 0.002 0.005 0.507 0.644 <th> </th> <th></th> <th>1</th> <th></th> <th></th> <th></th> <th></th>			1									
Cislita 0.335 0.046 1.08 1.461 4.625 6.086 Giurgiulesti 0.294 0.059 1.02 1.373 2.967 4.34 June 2013 Costesti-Stinca, nodel sector 0.499 0.041 0.875 1.415 0.646 2.061 Costesti-Stinca, lower 0.69 0.018 1.241 1.949 0.522 2.471 Braniste 0.16 0.013 1.139 1.312 1.119 2.431 Sculeni 0.07 1.022 1.0408 1.499 2.745 4.244 Lewan 0.014 0.017 1.365 1.522 0.938 2.46 Leuseni 0.02 0.014 0.487 0.504 6.446 6.95 Cislita 0.01 0.024 0.65 0.684 5.917 6.601 Giurgiulesti 0.002 0.005 0.5 0.507 0.464 0.671 Tectani (Prut River) 0.002 0.001 0.73 0.74	Leuseni	0.254	0.049	1.68	1.986	5.725	7.711					
Giurgiulesti 0.294 0.059 1.02 1.373 2.967 4.34 June 2013 Costesti-Stinca, middle 0.499 0.041 0.875 1.415 0.666 2.061 Costesti-Stinca, lower 0.69 0.018 1.241 1.949 0.522 2.471 Braniste 0.16 0.013 1.139 1.312 1.119 2.431 Sculeni 0.07 0.021 1.408 1.499 2.745 4.244 Leova 0.14 0.017 1.365 1.522 0.938 2.46 Leuseni 0.02 0.014 1.28 1.314 3.549 4.863 Cahul 0.02 0.014 0.875 1.415 0.664 5.917 6.601 Giurgiulesti 0.499 0.041 0.875 1.415 0.646 0.971 Tetcani (Prut River) 0.002 0.006 0.6 0.684 1.672 Badragii Noi (Costesti-Stinca 0.602	Cahul	0.235	0.036	1.74	2.011	3.23	5.241					
June 2013 Costesti-Stinca, middle sector 0.499 0.041 0.875 1.415 0.646 2.061 Costesti-Stinca, lower sector 0.69 0.018 1.241 1.949 0.522 2.471 Braniste 0.16 0.013 1.139 1.312 1.119 2.431 Braniste 0.16 0.017 1.365 1.522 0.938 2.46 Leova 0.14 0.017 1.365 1.522 0.938 2.46 Leuseni 0.02 0.014 0.47 0.504 6.446 6.95 Cislita 0.01 0.024 0.65 0.684 5.917 6.601 Giurgiulesti 0.499 0.001 0.875 1.415 0.646 2.061 Turetani (Prut River) 0.002 0.006 0.5 0.507 0.464 0.971 Teteani (Prut River) 0.002 0.01 0.73 0.742 1.864 2.606 Duruitoarea Noua (Costesti-Stinca	Cislita	0.335	0.046	1.08	1.461	4.625	6.086					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Giurgiulesti	0.294	0.059	1.02	1.373	2.967	4.34					
sector 0.499 0.041 0.875 1.415 0.646 2.061 Costesti-Stinca, lower 0 1.241 1.949 0.522 2.471 Braniste 0.16 0.013 1.139 1.312 1.119 2.431 Sculeni 0.07 0.021 1.408 1.499 2.745 4.244 Leova 0.14 0.017 1.365 1.522 0.938 2.46 Leuseni 0.02 0.014 0.47 0.504 6.446 6.95 Cisitia 0.010 0.024 0.65 0.684 5.917 6.601 Giurgiulesti 0.499 0.401 0.875 1.415 0.646 0.971 Tetcan (Prut River) 0.002 0.005 0.5 0.507 0.464 0.971 Stinca reservoir, upper	June 2013											
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		0.400	0.041	0.055	1 41 5	0.646	0.041					
sector 0.69 0.018 1.241 1.949 0.522 2.471 Braniste 0.16 0.013 1.139 1.312 1.119 2.431 Sculeni 0.07 0.021 1.408 1.499 2.745 4.244 Leova 0.14 0.017 1.365 1.522 0.938 2.46 Leuseni 0.02 0.014 1.28 1.314 3.549 4.863 Cahul 0.02 0.014 0.47 0.504 6.446 6.95 Cisita 0.01 0.024 0.65 0.684 5.917 6.601 Giurgiulesti 0.499 0.041 0.875 1.415 0.646 2.061 Teteani (Prut River) 0.002 0.005 0.5 0.507 0.464 0.971 Teteani (Prut River) 0.002 0.01 0.73 0.742 1.864 2.606 Duritoare Noua (Costesti-Stinca		0.499	0.041	0.875	1.415	0.646	2.061					
Sculeni 0.07 0.021 1.408 1.499 2.745 4.244 Leova 0.14 0.07 1.365 1.522 0.938 2.46 Leuseni 0.02 0.014 1.28 1.314 3.549 4.863 Cahul 0.02 0.014 0.47 0.504 6.446 6.95 Cislita 0.01 0.024 0.65 0.684 5.917 6.601 Giurgiulesti 0.499 0.041 0.875 1.415 0.646 0.061 Criva (Prut River) 0.002 0.005 0.5 0.507 0.464 0.971 Tetcani (Prut River) 0.002 0.006 0.6 0.608 1.064 1.672 Badragii Noi (Costesti- Stinca reservoir, upper - <t< td=""><td>-</td><td>0.69</td><td>0.018</td><td>1.241</td><td>1.949</td><td>0.522</td><td>2.471</td></t<>	-	0.69	0.018	1.241	1.949	0.522	2.471					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Braniste	0.16	0.013	1.139	1.312	1.119	2.431					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Sculeni	0.07	0.021	1.408	1.499	2.745	4.244					
Leuseni 0.02 0.014 1.28 1.314 3.549 4.863 Cahul 0.02 0.014 0.47 0.504 6.446 6.95 Cislita 0.01 0.024 0.65 0.684 5.917 6.601 Giurgiulesti 0.499 0.041 0.875 1.415 0.646 2.061 July 2013Criva (Prut River) 0.002 0.005 0.5 0.507 0.464 0.971 Tetcani (Prut River) 0.002 0.006 0.6 0.608 1.064 1.672 Badragii Noi (Costesti- Stinca reservoir, upper sector) 0.002 0.01 0.73 0.742 1.864 2.606 Duruitoarea Noua (Costesti-Stinca reservoir, middle sector) 0.11 0.03 0.575 0.604 0.931 1.535 Braniste 0.11 0.02 0.68 0.88 2.432 3.232 Sculeni 0.002 0.01 0.62 0.632 2.997 3.629 Leova 0.002 0.01 0.63 0.818 1.264 2.082 Cislita 0.002 0.01 0.805 0.818 1.264 2.082 Cislita 0.002 0.01 0.805 0.823 9.194 10.017 Cugust 2.012 0.028 0.041 0.805 0.823 9.194 10.017 Cugust 2.028 0.026 0.596 0.85 3.064 3.914 Braniste <td>Leova</td> <td>0.14</td> <td>0.017</td> <td></td> <td>1.522</td> <td>0.938</td> <td>2.46</td>	Leova	0.14	0.017		1.522	0.938	2.46					
Cahul 0.02 0.014 0.47 0.504 6.446 6.95 Cislita 0.01 0.024 0.65 0.684 5.917 6.601 Giurgiulesti 0.499 0.041 0.875 1.415 0.646 2.061 Tetcani (Prut River) 0.002 0.005 0.5 0.507 0.464 0.971 Tetcani (Prut River) 0.002 0.006 0.6 0.608 1.064 1.672 Badragii Noi (Costesti- Stinca reservoir, upper 0.002 0.01 0.73 0.742 1.864 2.606 Duruitoarea Noua (Costesti-Stinca 0.002 0.01 0.73 0.742 1.864 2.606 Duruitoarea Noua (Costesti-Stinca 0.1 0.03 0.575 0.604 0.931 1.535 Braniste 0.1 0.02 0.68 0.8 2.432 3.232 Sculeni 0.002 0.01 0.62 0.632 2.997 3.629 Leova 0.002 0.01 0.635 0.815		0.02										
Cislita 0.01 0.024 0.65 0.684 5.917 6.601 Giurgiulesti 0.499 0.041 0.875 1.415 0.646 2.061 July 2013 Criva (Prut River) 0.002 0.006 0.6 0.608 1.064 0.971 Tetcani (Prut River) 0.002 0.006 0.6 0.608 1.064 1.672 Badragii Noi (Costesti- Stinca reservoir, upper 0.002 0.01 0.73 0.742 1.864 2.606 Duruitoarea Noua (Costesti-Stinca 0.002 0.01 0.73 0.742 1.864 2.606 Duruitoarea Noua (Costesti-Stinca, lower sector 0.01 0.03 0.575 0.705 3.499 4.204 Costesti-Stinca, lower sector 0.002 0.01 0.62 0.632 2.997 3.629 Leova 0.002 0.01 0.73 0.742 1.664 2.406 Leuseni 0.002 0.01 0.73 0.742 1.664 2.062												
Giurgiulesti 0.499 0.041 0.875 1.415 0.646 2.061 July 2013 Criva (Prut River) 0.002 0.005 0.5 0.507 0.464 0.971 Tetcani (Prut River) 0.002 0.006 0.6 0.608 1.064 1.672 Badragii Noi (Costesti- Stinca reservoir, upper 0.002 0.01 0.73 0.742 1.864 2.606 Duruitoarea Noua (Costesti-Stinca reservoir, middle sector) 0.1 0.03 0.575 0.604 0.931 1.535 Braniste 0.1 0.02 0.68 0.8 2.432 3.232 Sculeni 0.002 0.01 0.73 0.742 1.664 2.406 Levsa 0.002 0.01 0.62 0.632 2.997 3.629 Leva 0.002 0.01 0.73 0.742 1.664 2.406 Leva 0.002 0.01 0.73 0.742 1.664 2.082 Sculeni 0.002 0.011<												
July 2013 Criva (Prut River) 0.002 0.005 0.5 0.507 0.464 0.971 Tetcani (Prut River) 0.002 0.006 0.6 0.608 1.064 1.672 Badragii Noi (Costesti- Stinca reservoir, upper sector) 0.002 0.01 0.73 0.742 1.864 2.606 Duruitoarea Noua (Costesti-Stinca reservoir, middle sector) 0.1 0.03 0.575 0.705 3.499 4.204 Costesti-Stinca reservoir, middle sector) 0.1 0.03 0.575 0.604 0.931 1.535 Braniste 0.1 0.02 0.68 0.8 2.432 3.232 Sculeni 0.002 0.01 0.62 0.632 2.997 3.629 Leova 0.002 0.01 0.73 0.742 1.664 2.406 Leuseni 0.002 0.011 0.805 0.815 3.197 4.012 Cahul 0.002 0.016 0.805 0.822 5.729 6.551 Giurgiulesti												
Criva (Prut River) 0.002 0.005 0.5 0.507 0.464 0.971 Tetcani (Prut River) 0.002 0.006 0.6 0.608 1.064 1.672 Badragii Noi (Costesti- Stinca reservoir, upper 0.002 0.01 0.73 0.742 1.864 2.606 Duruitoarea Noua (Costesti-Stinca 0.01 0.03 0.575 0.705 3.499 4.204 Costesti-Stinca, lower sector 0.002 0.01 0.63 0.632 2.997 3.629 Leova 0.002 0.01 0.73 0.742 1.664 2.406 Leuseni 0.002 0.01 0.62 0.632 2.997 3.629 Leova 0.002 0.01 0.73 0.742 1.664 2.406 Leuseni 0.002 0.01 0.73 0.742 1.664 2.082 Cislita 0.002 0.011 0.805 0.815 3.197 4.012 Cahul 0.002 0.016 0.805 0.823 <t< td=""><td></td><td>0</td><td></td><td></td><td></td><td>0.0.0</td><td>2.001</td></t<>		0				0.0.0	2.001					
Tetcani (Prut River) 0.002 0.006 0.6 0.608 1.064 1.672 Badragi Noi (Costesti- Stinca reservoir, upper sector) 0.002 0.01 0.73 0.742 1.864 2.606 Duruitoarea Noua (Costesti-Stinca reservoir, middle sector) 0.1 0.03 0.575 0.705 3.499 4.204 Costesti-Stinca reservoir, middle sector) 0.1 0.03 0.575 0.604 0.931 1.535 Braniste 0.1 0.02 0.68 0.8 2.432 3.232 Sculeni 0.002 0.01 0.73 0.742 1.664 2.406 Leova 0.002 0.01 0.62 0.632 2.997 3.629 Leova 0.002 0.01 0.73 0.742 1.664 2.406 Leuseni 0.002 0.01 0.73 0.742 1.664 2.082 Cislita 0.002 0.011 0.805 0.818 1.264 2.082 Giurgiulesti 0.002 0.016 0.805 <td>Criva (Prut River)</td> <td>0.002</td> <td></td> <td></td> <td>0 507</td> <td>0 464</td> <td>0 971</td>	Criva (Prut River)	0.002			0 507	0 464	0 971					
Badragi Noi (Costesti- Stinca reservoir, upper sector) 0.000 0.001 0.73 0.742 1.864 2.606 Duruitoarea Noua (Costesti-Stinca reservoir, middle sector) 0.1 0.03 0.575 0.705 3.499 4.204 Costesti-Stinca reservoir, middle sector) 0.1 0.03 0.575 0.604 0.931 1.535 Braniste 0.1 0.02 0.68 0.88 2.432 3.232 Sculeni 0.002 0.01 0.73 0.742 1.664 2.406 Leova 0.002 0.01 0.62 0.632 2.997 3.629 Leova 0.002 0.01 0.73 0.742 1.664 2.406 Leuseni 0.002 0.01 0.73 0.742 1.664 2.406 Leuseni 0.002 0.011 0.805 0.818 1.264 2.082 Cislita 0.002 0.015 0.805 0.823 9.194 10.017 Costesti-Stinca, lower sector 0.198 0.056 <td< td=""><td>· · · · · · · · · · · · · · · · · · ·</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	· · · · · · · · · · · · · · · · · · ·											
Stinca reservoir, upper sector) 0.002 0.01 0.73 0.742 1.864 2.606 Duruitoarea Noua (Costesti-Stinca reservoir, middle sector) 0.1 0.03 0.575 0.705 3.499 4.204 Costesti-Stinca reservoir, middle sector) 0.1 0.03 0.575 0.604 0.931 1.535 Braniste 0.1 0.02 0.68 0.8 2.432 3.232 Sculeni 0.002 0.01 0.62 0.632 2.997 3.629 Leova 0.002 0.01 0.73 0.742 1.664 2.406 Leuseni 0.002 0.011 0.805 0.815 3.197 4.012 Cahul 0.002 0.011 0.805 0.823 9.194 10.017 Guistia 0.002 0.016 0.805 0.823 9.194 10.017 Costesti-Stinca, lower sector 0.198 0.056 0.596 0.85 3.064 3.914 Braniste 0.228 0.04 0.655 <	()	0.002	0.000	0.0	0.000	1.001	1.072					
Duruitoarea Noua (Costesti-Stinca reservoir, middle sector) 0.1 0.03 0.575 0.705 3.499 4.204 Costesti-Stinca, lower sector 0.002 0.027 0.575 0.604 0.931 1.535 Braniste 0.1 0.002 0.688 0.88 2.432 3.232 Sculeni 0.002 0.01 0.62 0.632 2.997 3.629 Leova 0.002 0.01 0.73 0.742 1.664 2.406 Leuseni 0.002 0.01 0.73 0.742 1.664 2.406 Leuseni 0.002 0.011 0.805 0.815 3.197 4.012 Cahul 0.002 0.011 0.805 0.818 1.264 2.082 Cislita 0.002 0.016 0.805 0.823 9.194 10.017 Costesti-Stinca, lower sector 0.198 0.056 0.596 0.85 3.064 3.914 Braniste 0.228 0.04 0.655 0.923	- ,											
(Costesti-Stinca) reservoir, middle sector)0.10.030.5750.7053.4994.204Costesti-Stinca, lower sector0.0020.0270.5750.6040.9311.535Braniste0.10.0020.680.82.4323.232Sculeni0.0020.010.620.6322.9973.629Leova0.0020.010.730.7421.6642.406Leuseni0.0020.010.730.7421.6642.082Cislita0.0020.0110.8050.8153.1974.012Cahul0.0020.0150.8050.8239.19410.017Cislita0.0020.0160.8050.8239.19410.017Costesti-Stinca, lower sector0.1980.0560.5960.853.0643.914Braniste0.2280.040.6550.9232.4223.345Sculeni0.190.0360.6490.8750.6251.5Leova0.2760.0330.9181.2273.3254.552Leuseni0.3060.0410.8861.2330.2381.471Cahul0.2870.0390.8431.1691.7522.921Cislita0.3980.0430.661.1012.0483.149	·	0.002	0.01	0.73	0.742	1.864	2.606					
reservoir, middle sector)0.10.030.5750.7053.4994.204Costesti-Stinca, lower0.0020.0270.5750.6040.9311.535Braniste0.10.020.680.82.4323.232Sculeni0.0020.010.620.6322.9973.629Leova0.0020.010.730.7421.6642.406Leuseni0.0020.0110.8050.8153.1974.012Cahul0.0020.0110.8050.8181.2642.082Cislita0.0020.0150.8050.8239.19410.017Costesti-Stinca, lower sector0.1980.0560.5960.853.0643.914Braniste0.2280.040.6550.9232.4223.345Sculeni0.190.360.6490.8750.6251.5Leova0.2760.0330.9181.2273.3254.552Leuseni0.3060.0410.8861.2330.2381.471Cahul0.2870.0390.8431.1691.7522.921Cislita0.3980.0430.661.1012.0483.149												
Costesti-Stinca, lower sector 0.002 0.027 0.575 0.604 0.931 1.535 Braniste 0.1 0.02 0.68 0.8 2.432 3.232 Sculeni 0.002 0.01 0.62 0.632 2.997 3.629 Leova 0.002 0.01 0.73 0.742 1.664 2.406 Leuseni 0.002 0.01 0.73 0.742 1.664 2.406 Leuseni 0.002 0.011 0.805 0.815 3.197 4.012 Cahul 0.002 0.011 0.805 0.818 1.264 2.082 Cislita 0.002 0.016 0.805 0.822 5.729 6.551 Giurgiulesti 0.002 0.016 0.805 0.823 9.194 10.017 Kugust 2013 Costesti-Stinca, lower 0.198 0.056 0.596 0.85 3.064 3.914 Braniste 0.228 0.04 0.655 0.923	、 、											
sector0.0020.0270.5750.6040.9311.535Braniste0.10.020.680.82.4323.232Sculeni0.0020.010.620.6322.9973.629Leova0.0020.010.730.7421.6642.406Leuseni0.0020.0080.8050.8153.1974.012Cahul0.0020.0110.8050.8181.2642.082Cislita0.0020.0150.8050.8225.7296.551Giurgiulesti0.0020.0160.8050.8239.19410.017Costesti-Stinca, lower sector0.1980.0560.5960.853.0643.914Braniste0.2280.040.6550.9232.4223.345Sculeni0.190.0360.6490.8750.6251.5Leova0.2760.0330.9181.2273.3254.552Leuseni0.3060.0410.8861.2330.2381.471Cahul0.2870.0390.8431.1691.7522.921Cislita0.3980.0430.661.1012.0483.149		0.1	0.03	0.575	0.705	3.499	4.204					
Braniste0.10.020.680.82.4323.232Sculeni0.0020.010.620.6322.9973.629Leova0.0020.010.730.7421.6642.406Leuseni0.0020.0080.8050.8153.1974.012Cahul0.0020.0110.8050.8181.2642.082Cislita0.0020.0150.8050.8225.7296.551Giurgiulesti0.0020.0160.8050.8239.19410.017Costesti-Stinca, lower sector0.1980.0560.5960.853.0643.914Braniste0.2280.040.6550.9232.4223.345Sculeni0.190.0360.6490.8750.6251.5Leova0.2760.0330.9181.2273.3254.552Leuseni0.3060.0410.8861.2330.2381.471Cahul0.2870.0390.8431.1691.7522.921Cislita0.3980.0430.661.1012.0483.149	-	0.002	0.027	0 575	0 604	0.931	1 535					
Sculeni 0.002 0.01 0.62 0.632 2.997 3.629 Leova 0.002 0.01 0.73 0.742 1.664 2.406 Leuseni 0.002 0.008 0.805 0.815 3.197 4.012 Cahul 0.002 0.011 0.805 0.818 1.264 2.082 Cislita 0.002 0.015 0.805 0.822 5.729 6.551 Giurgiulesti 0.002 0.016 0.805 0.823 9.194 10.017 Kugust 2013 Kugus												
Leova0.0020.010.730.7421.6642.406Leuseni0.0020.0080.8050.8153.1974.012Cahul0.0020.0110.8050.8181.2642.082Cislita0.0020.0150.8050.8225.7296.551Giurgiulesti0.0020.0160.8050.8239.19410.017August 2013Costesti-Stinca, lower sector0.1980.0560.5960.853.0643.914Braniste0.2280.040.6550.9232.4223.345Sculeni0.190.0360.6490.8750.6251.5Leova0.2760.0330.9181.2273.3254.552Leuseni0.3060.0410.8861.2330.2381.471Cahul0.2870.0390.8431.1691.7522.921Cislita0.3980.0430.661.1012.0483.149												
Leuseni0.0020.0080.8050.8153.1974.012Cahul0.0020.0110.8050.8181.2642.082Cislita0.0020.0150.8050.8225.7296.551Giurgiulesti0.0020.0160.8050.8239.19410.017Costesti-Stinca, lower sector0.1980.0560.5960.853.0643.914Braniste0.2280.040.6550.9232.4223.345Sculeni0.190.0360.6490.8750.6251.5Leova0.2760.0330.9181.2273.3254.552Leuseni0.3060.0410.8861.2330.2381.471Cahul0.2870.0390.8431.1691.7522.921Cislita0.3980.0430.661.1012.0483.149												
Cahul0.0020.0110.8050.8181.2642.082Cislita0.0020.0150.8050.8225.7296.551Giurgiulesti0.0020.0160.8050.8239.19410.017August 2013Costesti-Stinca, lower sector0.1980.0560.5960.853.0643.914Braniste0.2280.040.6550.9232.4223.345Sculeni0.190.0360.6490.8750.6251.5Leova0.2760.0330.9181.2273.3254.552Leuseni0.3060.0410.8861.2330.2381.471Cahul0.2870.0390.8431.1691.7522.921Cislita0.3980.0430.661.1012.0483.149												
Cislita0.0020.0150.8050.8225.7296.551Giurgiulesti0.0020.0160.8050.8239.19410.017August 2013Costesti-Stinca, lower sector0.1980.0560.5960.853.0643.914Braniste0.2280.040.6550.9232.4223.345Sculeni0.190.0360.6490.8750.6251.5Leova0.2760.0330.9181.2273.3254.552Leuseni0.3060.0410.8861.2330.2381.471Cahul0.2870.0390.8431.1691.7522.921Cislita0.3980.0430.661.1012.0483.149												
Giurgiulesti0.0020.0160.8050.8239.19410.017August 2013Costesti-Stinca, lower sector0.1980.0560.5960.853.0643.914Braniste0.2280.040.6550.9232.4223.345Sculeni0.190.0360.6490.8750.6251.5Leova0.2760.0330.9181.2273.3254.552Leuseni0.3060.0410.8861.2330.2381.471Cahul0.2870.0390.8431.1691.7522.921Cislita0.3980.0430.661.1012.0483.149												
August 2013 August 2013 Costesti-Stinca, lower sector 0.198 0.056 0.596 0.85 3.064 3.914 Braniste 0.228 0.04 0.655 0.923 2.422 3.345 Sculeni 0.19 0.036 0.649 0.875 0.625 1.5 Leova 0.276 0.033 0.918 1.227 3.325 4.552 Leuseni 0.306 0.041 0.886 1.233 0.238 1.471 Cahul 0.287 0.039 0.843 1.169 1.752 2.921 Cislita 0.398 0.043 0.66 1.101 2.048 3.149												
Costesti-Stinca, lower sector0.1980.0560.5960.853.0643.914Braniste0.2280.040.6550.9232.4223.345Sculeni0.190.0360.6490.8750.6251.5Leova0.2760.0330.9181.2273.3254.552Leuseni0.3060.0410.8861.2330.2381.471Cahul0.2870.0390.8431.1691.7522.921Cislita0.3980.0430.661.1012.0483.149	Giurgiulesti	0.002			0.823	9.194	10.017					
sector0.1980.0560.5960.853.0643.914Braniste0.2280.040.6550.9232.4223.345Sculeni0.190.0360.6490.8750.6251.5Leova0.2760.0330.9181.2273.3254.552Leuseni0.3060.0410.8861.2330.2381.471Cahul0.2870.0390.8431.1691.7522.921Cislita0.3980.0430.661.1012.0483.149	Costesti-Stinca lower		August 201	5								
Sculeni 0.19 0.036 0.649 0.875 0.625 1.5 Leova 0.276 0.033 0.918 1.227 3.325 4.552 Leuseni 0.306 0.041 0.886 1.233 0.238 1.471 Cahul 0.287 0.039 0.843 1.169 1.752 2.921 Cislita 0.398 0.043 0.66 1.101 2.048 3.149	-	0.198	0.056	0.596	0.85	3.064	3.914					
Leova 0.276 0.033 0.918 1.227 3.325 4.552 Leuseni 0.306 0.041 0.886 1.233 0.238 1.471 Cahul 0.287 0.039 0.843 1.169 1.752 2.921 Cislita 0.398 0.043 0.66 1.101 2.048 3.149	Braniste	0.228	0.04	0.655	0.923	2.422	3.345					
Leuseni0.3060.0410.8861.2330.2381.471Cahul0.2870.0390.8431.1691.7522.921Cislita0.3980.0430.661.1012.0483.149	Sculeni	0.19	0.036	0.649	0.875	0.625	1.5					
Cahul 0.287 0.039 0.843 1.169 1.752 2.921 Cislita 0.398 0.043 0.66 1.101 2.048 3.149	Leova	0.276	0.033	0.918	1.227	3.325	4.552					
Cahul0.2870.0390.8431.1691.7522.921Cislita0.3980.0430.661.1012.0483.149	Leuseni	0.306	0.041	0.886	1.233	0.238	1.471					
Cislita 0.398 0.043 0.66 1.101 2.048 3.149		0.287	0.039	0.843	1.169	1.752	2.921					
		0.398	0.043	0.66	1.101	2.048	3.149					
	Giurgiulesti	0.35	0.044	0.655	1.049	1.417	2.466					

The dynamics of mineral, organic and total phosphorus is presented in the Figure 17.

Fig.17 Dynamics of mineral (Pmin), organic (Porg), and total (Ptotal) phosphorus in the Costesti-Stinca reservoir, middle sector (C-Sm), next to the dam (C-S), and in the Prut River (B-Braniste, S-Sculeni, L-Leuseni, Lv-Leova, C-Cahul, C-P-Cislita-Prut, G-Giurgiulesti), June-October of 2012 and February-April of 2013, and May-August 2013 mg/l

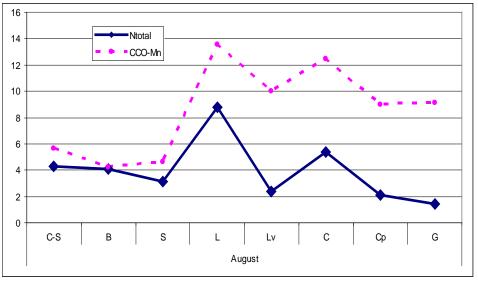
It is worth to mention that in summer of 2012 the concentrations of mineral phosphorus, in most of cases, were higher than those of organic phosphorus, but in autumn of 2012 and


summer of 2013 - opposite. It was obvious the increase of phosphorus concentrations along the river.

It was evident the increase of content of organic substances, both easily degradable and poorly degradable, along the Prut River (Fig.18) with few exceptions, when the highest values were registered at Leuseni and Cahul, being provoked by discharge of insufficient purified wastewaters.

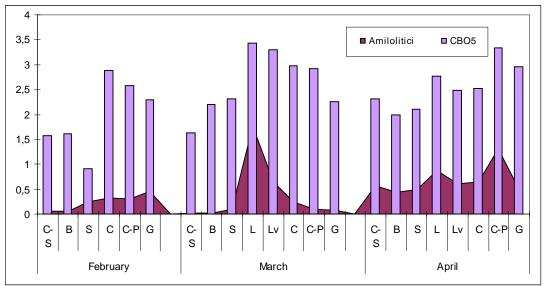
Fig. 18 Dynamics of permanganate (CCO-Mn) and dichromate (CCO-Cr) oxidability in Costesti-Stinca reservoir, superior (C-Ss) middle sector (C-Sm), next to the dam (C-S), and in the Prut River (Cr- Criva, - Titcani, B-Braniste, S-Sculeni, L-Leuseni, Lv-Leova, C-Cahul, C-P-Cislita-Prut, G-Giurgiulesti), June-October of 2012, February-April of 2013, and May-August 2013mgO/l

On the base of determination of chemical (CCO_{Cr}) and biochemical (CBO_5) consumption of oxygen, it was calculated the self-cleaning capacity of the Prut River: in 2012 its value not exceeded 0.162 (Braniste, August of 2012), and in 2013 it not exceeded 0.22 (Fig.19). It is worth to be mention that no obvious correlation was observed between the values of CBO₅ and CCO_{Cr} .

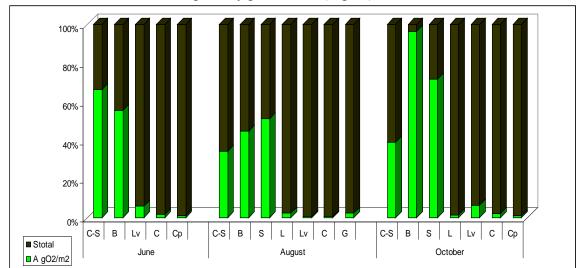

Fig. 19 Self-cleaning capacity of waters in Costesti-Stinca reservoir, (superior (C-Ss) middle sector (C-Sm), next to the dam (C-S), and in the Prut River (Cr-Criva, T-Titcani, B-Braniste, S-Sculeni, L-Leuseni, Lv-Leova, C-Cahul, C-P-Cislita-Prut, G-Giurgiulesti), August- December of 2012, February-April of 2013, and May-August 2013mgO/l

D.1.4 Abiotic factors' influence upon aquatic organisms communities. Evaluation of the natural and anthropogenic threats upon the fish reproduction capability

The main role in the development of bacterioplankton, phytoplankton and zooplankton belongs to nutritive elements, especially nitrogen and phosphorus compounds. Dynamics and ratio between the ammonifying, nitrifying and denitrifying bacteria is directly dependent on the content of ammonium ions, nitrates and nitrites in the waters of aquatic ecosystems. The role of phosphorus in the development of planktonic bacteria and alga consists of in its contribution to the energy accumulation and transformation inside cells. Quantitative assessment of intensity of planktonic bacteria and alga response to the modifications of phosphorus concentrations in water


is one of relevant methods used for elaboration of prognostic on aquatic ecosystem troficity (Zubcov et al., 2009; Zubcov, Ungureanu, Munjiu, 2005).

The dynamics of dissolved organic substances in the waters of Prut River reflects destruction processes, because organic matter is the main nutrition source for many groups of bacteria, especially amylolytic and cellulosolytic ones. It was proved that when the temperature of Prut River water is favorable for these groups of microorganisms, the relationship between the concentration of organic substances in the water and density of these bacteria is almost linear. From other hand, it was evident a positive correlation between the concentration of organic substances and density of planktonic bacteria (Fig. 20).


Fig. 20 Correlation between the concentration of easily biodegradable organic compounds (CCO-Mn, mgO/l) and the density of total bacterioplankton (Ntotal, million cells/ml) in the Costesti-Stinca reservoir, next to the dam, and in the Prut River (B-Braniste, S-Sculeni, L-Leuseni, Lv-Leova, C-Cahul, Cp-Cislita-Prut, G-Giurgiulesti), August of 2012

It is quite evident the correlation between the quantity of amilolytic bacteria and the biochemical consumption of oxygen (Fig.21).

Fig. 21 Correlation between the concentration of amiloalitic bacterioplankton and biochemical (CBO₅) consumption of oxygen (CBO-5, mgO₂/l) in the Costesti-Stinca reservoir, next to the dam, and in the Prut River (B-Braniste, S-Sculeni, L-Leuseni, Lv-Leova, C-Cahul, Cp-Cislita-Prut, G-Giurgiulesti), February-April 2013

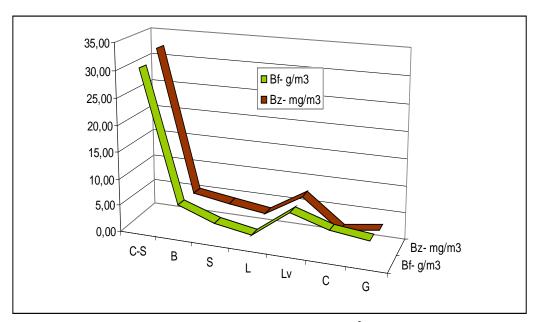

The synthesis of phytoplankton primary production depends on a range of factors, especially on solar radiation and water transparency. The carried out investigations revealed a negative correlation between the suspensions content in the waters of Prut River and Costesti-Stinca reservoir and the values of primary production (Fig.21).

Fig. 21 Relationship between the content of suspensions (Stotal– mg/l) and phytoplankton primary production $(A - gO_2/m^2)$ in the Costesti-Stinca reservoir, next to the dam, and in the Prut River (B-Braniste, S-Sculeni, L-Leuseni, Lv-Leova, C-Cahul, Cp-Cislita-Prut, G-Giurgiulesti), 2012

It is extremely important to establish the relationships between different environmental factors, but particularly, between different groups of aquatic organisms. Thus, it was obvious a classic correlation between the biomass of planktonic organisms in summer time (Fig. 22).

It is worth to mention that in summer of 2012 the concentrations of mineral phosphorus, in most of cases, were higher than those of organic phosphorus, and in autumn of 2012- opposite. It was obvious the increase of phosphorus concentrations along the river.

Fig. 22 Relationship between the phytoplankton biomass (Bf, g/m^3) and zooplankton biomass (Bz, mg/m^3) in the Costesti-Stinca reservoir, next to the dam, and in the Prut River (B-Braniste, S-Sculeni, L-Leuseni, Lv-Leova, C-Cahul, G-Giurgiulesti), summer of 2012

D.1.5 Assessment of the aquatic organisms' role in the chemical migration process, aiming at the evaluation of Prut River's aquatic resources quality

In conformity to one of the main concepts of geochemical ecology and biogeochemistry, organisms and biocenoses not only are able to adapt to the chemical factors of environment, but from their side, they modify the environment composition in correspondence with their needs to the development and reproduction. Trace metals are chemical elements, for which it is of outmost importance to identify the environmentally tolerable diapason of the natural variability of their content. The limits of diapason are due to the regional characteristics of ecosystems.

The concentration of a range of dissolved metals in the last years is by 2-10 time lower in comparison with the 80-90's of the past century (Zubcov Elena, 2002; Zubcov Elena, Zubcov Natalia,2013), when there was an intense application of chemicals in the agriculture of Moldova and the anthropic impact was extremely high. As example, the concentration of zinc was ranging between 12.2-162 μ g/l, of copper - between 2.0-36.7 μ g/l. Nowadays the concentration of zinc not exceeds 70 μ g/l, and of copper - 10 μ g/l.

Along the Prut River the content of zinc, copper, nickel, lead, and cadmium grows continuously in the water (Fig.23, 24), as well as in suspensions; simultaneously, the share of forms in suspensions increases in relation to those dissolved. Thus, the share of zinc in suspensions in the Lower Prut at the Braniste station is of 52.2 - 54.9%, but at the Cislita-Prut station – 58.8-72.8%.

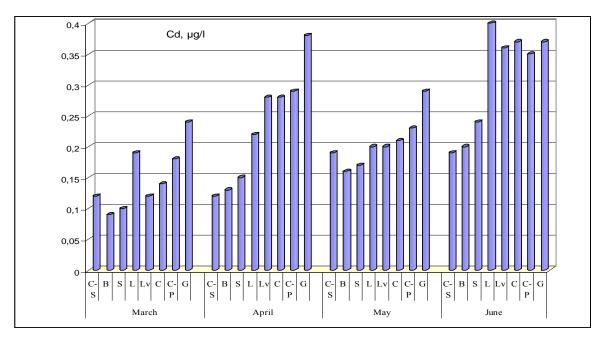


Fig.23. The dynamics of dissolved cadmium in the waters of the Prut River, 2013 (C-S- Costesti-Stinca, B-Braniste, S-Sculeni, L-Leuseni, Lv- Leova, C-Cahul, C-P-Cislita-Prut, G-Giurgiulesti)

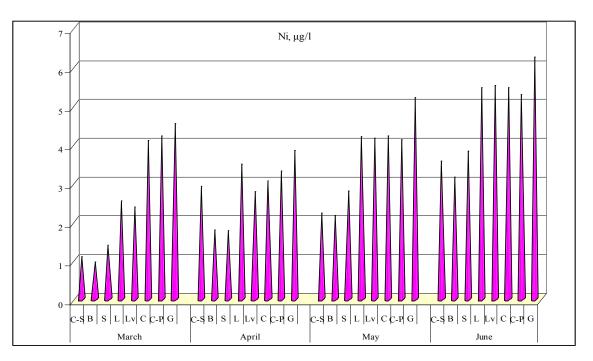


Fig.24. The dynamics of dissolved nickel in the waters of the Prut River, 2013 (C-S- Costesti-Stinca, B-Braniste, S-Sculeni, L-Leuseni, Lv- Leova, C-Cahul, C-P-Cislita-Prut, G-Giurgiulesti)

The accumulation of metals in biota is one of the most important indices in the biomonitoring of metals in the aquatic ecosystems.

In the development of the fundamental principles of the trace element migration in aquatic ecosystems and, in general, of the theory of chemical composition of natural waters, a particular importance belongs to detailed researches of their accumulation in aquatic plants and animals in dependence of the physical-geographical, biological and anthropogenic factors. The accumulation of metals in plants is one of the most important indices in the biomonitoring of metals in aquatic ecosystems.

Aquatic plants are of great importance in the production balance of the water bodies. They form the main part of the primary organic matter-material and energetic basis for the existence of aquatic and semi-aquatic animals, have a strong significance in the environment establishment, change the regime of gases and pH of water, define the local hydrodynamic environment, are engaged in the exchange of macro- and trace elements and transformation of bottom sediments, etc. The range of fluctuation of the concentrations of metals in investigated aquatic plants is quite high and is conditioned by the taxonomic peculiarities of plants, contents of metals in water and bottom sediments, chemical properties and biological significance of trace elements, and also by the season.

In the plants sampled from the Prut River and Costesti-Stinca reservoir (*Potamogeton pectinatus, Potamogeton perfoliatus, Potamogeton crispus, Ceratophyllum demersum, Myriophyllum spicatum, Lemna minor, Cladofora sp., Enteromopha sp.*) the accumulation level of Pb varies between 1.3 - 10.8 μ g/g abs.dry mass, of Ni – 2.0-45.8 μ g/g, Cu - 1.5-51.2 μ g/g, Zn - 4.8-55.6 μ g/g, Cd - 0.65-3.2 μ g/g abs.dry mass. Some species of aquatic plants proved their suitability as monitors in the performing of the complex biomonitoring of the aquatic concentrations of metals, and have an intense growth, they serve as biofilters in the water self-purification processes. At the same time, aquatic plants may be a source of secondary

contamination of water bodies and streams, thus they play a huge role in the migration process and circuit of chemical elements in aquatic ecosystems.

An important role in the solving of problems linked to the trace element biomonitoring and, generally, in assessing the ecological state of fresh water ecosystems belongs to the identification of main factors, which influence the process of trace element accumulation in the body of aquatic invertebrate animals. The usage of aquatic animals as monitor organisms or indicator organisms of pollution with trace elements- metals demonstrated a range of advantages.

This group of aquatic organisms has the highest input to the ecosystem biodiversity, they, in their great majority, represent one of the intermediate links or the final one in the food chain. Consequently, the research of regularities of trace element accumulation in the benthic invertebrates has, certainly, both theoretical and practical importance (Zubcov at all,2002).

The results of carried out researches revealed that the diapason of oscillations of trace element concentrations in the benthic invertebrates of the Prut River is very large and it is determined by the variation of environment conditions, biological significance of trace elements, as well as taxonomic characteristics and age of hydrobionts (Tab. 16).

Taxa	Pb	Ni	Cu	Zn	Cd	
Dreissena polymorpha	2.9-8.1	5.8-49.0	3.4-62.2	11.2-88.9	0.87-2.15	
Lithoglyphus naticoides	1.6-31.2	5.1-33.9	5.9-33.4	8.9-95.5	0.55-1.15	
Chyronomidae	3.2-58.9	23.9-123	16.8-176	21.8-488	0.95-3.15	

Table 16 The range of concentration of metals in benthic invertebrates of the Prut River, $\mu g/g$ abs.dry mass

Trace element accumulation processes in different organs and tissue of immature and sexually mature fish are very complicated and diverse and are influenced by a complex of factors (Zubcov Natalia.2011, Zubcov Elena at all., 2009, 2012). The patterns of accumulation dynamics of metals in tissue of fish from the Prut River were identified and the dependence of this process on the element content in aquatic environment as well as on taxonomic, age and sexual characteristics of fish was determined

One of indicator of environmental factor impact on aquatic organisms is the accumulation level of metals in aquatic organisms. It was collected a certain amount of materials; some of them are currently under investigation (in particular, the fish samples collected in autumn and winter), but some preliminary results on metal accumulation in fish are presented in Table 17.

Species								Wet weight of		
	Zn	Cu	Pb	Ni	Mo	V	Cd	fish, gram		
Sander lucioperca	35.6	5.2	3.3	6.9	1.9	2.6	0.44	970		
Sander lucioperca	42.2	4.7	2.8	4.6	2.0	1.8	0.23	465		
Aspius aspius	48.2	6.9	4.2	7.8	2.6	2.8	0.72	1160		
Pelecus cultratus	64.4	11.2	4.8	10.2	2.8	2.6	1.25	660		
Abramis brama	53.2	8.1	2.8	9.1	2.0	1.8	0.53	960		
Abramis brama	46.6	5.6	2.5	6.7	1.6	2.0	0.41	460		
Barbus barbus	26.8	4.5	2.6	5.2	1.3	1.2	0.50	410		
Carassius auratus	25.6	5.2	2.2	8.0	2.1	2.5	0.54	280		
gibelio										
Carassius auratus	20.8	3.5	1.8	7.6	1.8	2.1	0.47	160		
gibelio										
*some other samples are currently under processing										

Table 17 Concentration of metals in the body muscles of fish from the Prut River, mg/kg wet weight

These researches are of high importance not only for revealing the processes of migration and accumulation of chemicals in aquatic ecosystems, but also for assessment of fish products quality and, as consequence, of human health impact.

As conclusion, in most cases for investigation period, the waters of Prut River were satisfactory for hydrobionts development, but the concentrations of suspensions, nutritive elements were not always favorable for planktonic organism development. However, in general the Prut River waters met the requirements for multifunctional aquatic ecosystems (which may serve as source of drinking water, as well as of water for irrigation, pisciculture and aquaculture).

The results of undertaken investigations have demonstrated that, despite of economic crisis, including agriculture regress in the hydrographic basin of the Prut River, the metal dynamics in the waters of the Prut River has an evident increasing tendency along the water stream. The level of metal accumulation in suspensions, aquatic plants and animals is characteristic for the moderately polluted-polluted aquatic ecosystems.

For sustainable use of aquatic resources in the hydrographic basin of the Prut River, it is necessary to revise and restore the protection areas of the river, the Prut natural wetlands and of its tributaries, most of which are dammed by diverse hydrotechnic constructions and on the banks of which are placed numerous dumps.

References

- 1. Abakumov, V.A. (1983). Methods of hydrobiological analysis of surface waters and bottom sediments. Leningrad: Gidrometeoizdat. 239 p. (*in Russian*)
- Banarescu P. (1964) Fauna of R.P.R., V. XIII, Pisces Osteicthyes, Bucharest: Acad., 958 p. (*in Romanian*)
- 3. Davideanu Gr et al (2008) Ichthyofauna of the Prut River. Ecological Society for Protection and Research of Wild Flora and Fauna AQUATERRA. Society of Bioremediation of Aquatic and Wet Ecosystems "Euribiont", Iasi, 2008, 80 p. (*in Romanian*)

- 4. Dolghii V.N. (1993) Ichthyofauna of Dniester and Prut basins, actual state, genesis, ecology and biological grounds of pisciculture usage. Kishinev: Stiinta, 322 p. (*in Russian*)
- 5. Grimalskii V.L. (1970) Biology of water bodies from the Prut River basin. Hydrobiological and pisciculture researches of water bodies of Moldova. Kishinev: Cartea moldoveneasca, pp. 5-77 (*in Russian*)
- 6. Jadin V.I. (1952) Molluscs of fresh and brackish waters of the USSR. M.-L. As USSR, 346 p. (*in Russian*)
- 7. ISO 5667-6:2005 Water quality Sampling Part 6: Guidance on sampling of rivers and streams.
- 8. ISO 5667-6:2009 Water quality-Sampling-Part 6: Guidance on sampling of rivers and streams.
- 9. ISO 6058:1984 Water quality Determination of calcium content EDTA titrimetric method.
- 10. ISO 6059:1989 Water quality -Determination of calcium and magnesium summary-Complexometric method.
- 11. ISO 6060:2006 Water quality. Determination of the chemical oxygen demand.
- 12. ISO 6878:2004 Water quality. Determination of phosphorus. Ammonium molybdate spectrometric method.
- 13. ISO 7150-1:1984 Water quality. Determination of ammonium. Part 1: Manual spectrometric method.
- 14. ISO 7890-3:2006 Water quality. Determination of nitrate. Part 3: Spectrometric method using sulfosalicylic acid.
- 15. ISO 8467-2009 Water quality. Determination of permanganate index.
- 16. ISO 9280:1990 Water quality Determination of sulphates -Chloride barium gravimetric method.
- 17. ISO 9297:1989 Water quality Determination of chloride Silver nitrate titration with chromate indicator (Mohr's method).
- 18. ISO 9963-1:1994 Water quality -- Determination of alkalinity -- Part 1: Determination of total and composite alkalinity
- 19. ISO 9963-2:1994 Water quality Determination of alkalinity Part 2: Determination of carbonate alkalinity. *Specifies a method for the titrimetric determination of carbonate alkalinity in natural and drinking water*
- 20. Kottelat M., Freyhof J. (2007) Handbook of European Freshwater Fishes. Switzerland: Delemont, 646 p.
- 21. Kutikova L.A., Starobogatov E.I. (1977) Key to the freshwater invertebrates from the European part of the USSR (plankton and benthos). Leningrad: Gidrometeoizdat, 510 p. *(in Russian).*
- 22. Mordukhai-Boltovsky F.D. (ed.) Key to the fauna of the Black Sea and the Sea of Azov. Free- living invertebrates. V.1. Protozoa, sponges, coelenterates, worms, tentaculates. Kiev: Naukova dumka, 1968, 440 pp. *(in Russian)*

- 23. Mordukhai-Boltovsky F.D. (ed.) Key to the fauna of the Black Sea and the Sea of Azov. Free- living invertebrates. V.2. Crustaceans. Kiev: Naukova dumka, 1969, 536 pp. *(in Russian)*
- 24. Mordukhai-Boltovsky F.D. (ed.) Key to the fauna of the Black Sea and the Sea of Azov. Free-living invertebrates. V.3. Arthropods (excepting crustaceans), molluscs, echinoderms, chaetognathes, chordates. Kiev: Naukova dumka, 1972, 340 pp. *(in Russian)*
- 25. Navodaru I. et al. (2008) Estimation of fish resources and fish farms. Methods of evaluation and forecast of fishery resources, Dobrogea, pp.46-61 (*in Romanian*)
- 26. Popa L.L. (1976) Fish of the Prut River basin. Kishinev: Stiinta, 88 p. (in Russian)
- 27. Popa L.L. (1977) Fish of Moldova. Kishinev: Cartea moldoveneasca, 200 p. (in Russian)
- 28. Popa L.L., Frunza M.A., Panas E.A. (1985) Morphoecological characteristics of some commercial fish species from the Prut River. Pisciculture researches of ponds and natural water bodies of Moldova. Kishinev, pp.101-110 (*in Russian*)
- 29. Semenov A.D (1977). Guide of chemical analysis of surface waters. Leningrad: Gidrometeoizdat, 542 p. (*in Russian*)
- 30. Tsalolikhin S. Ia (1994) Key to freshwater invertebrates of Russia and adjacent countries Vol.1., 395 p. (*in Russian*)
- 31. Tsalolikhin S. Ia. (1995) Key to freshwater invertebrates of Russia and adjacent countries Vol. 2., 629 p. (*in Russian*)
- 32. Tsalolikhin S. Ia. (1997) Key to freshwater invertebrates of Russia and adjacent countries Vol. 3., 440 p. (*in Russian*)
- 33. Tsalolikhin S. Ia. (2000) Key to freshwater invertebrates of Russia and adjacent countries Vol. 4, 997 p. (*in Russian*)
- 34. Tsalolikhin S. Ia. (2001) Key to freshwater invertebrates of Russia and adjacent countries Vol. 5, 825 p. (*in Russian*)
- 35. Tsalolikhin S. Ia. (2004) Key to freshwater invertebrates of Russia and adjacent countries Vol. 6., 528 p. (*in Russian*)
- 36. Semenov A.D. (1977). Guide of chemical analysis of surface waters. Leningrad: Gidrometeoizdat, 542 p. (*in Russian*)
- 37. Usatii M. (2004) Evolution, preservation, and sustainable use of diversity of aquatic ecosystems ichthyofauna of the Republic of Moldova. Autoreferat of theses for doctor habilitatus in biological sciences. Chisinau, 48 p. *(in Romanian)*
- 38. Zubcov E., Ungureanu L., Munjiu O. (2005) The influence of abiotic factors on phytoplankton development in ecosystems of Prut River. Journal of Academy of Sciences of Moldova. Series Life sciences, no. 2 (297), pp. 87 94 (*in Romanian*)
- Zubcov Elena, Ungureanu Laurentia, Ene Antoaneta, Bagrin Nina, Borodin Natalia (2009) Influence of nutrient substances on phytoplankton from Prut River. Annals of the University Dunarea de Jos of Galati. Fascicle II – Mathematics, Physics, Theoretical Mechanics, Year I (XXXII), pp. 68-72.
- 40. Sapozhnikova Y., Zubcov N., Huderford S., Roz L., Boicenco N., Zubcov E., Schlenk D., Evolution of pesticides and metals in fish of the Dniester River, Moldova. Chemosphere, Vol.60, Issue 2, July, pp.195-205, 2005.

- 41. Zubcova E., Metal migration in Prut River ecosystems. Limnological reports, vol.34, IAD. Proceedings of the 34th Conference, Tulcea, Romania, pp.101-107, 2002.
- Zubcov E., Biletchi L., Philipenko E., Ungureanu L., Study on metal accumulation in aquatic plants of Cuciurgan cooling reservoir. E3S Web of Conferences 1, 29008 (2013) DOI: 10.1051/e3sconf/20130129008, published by EDP Sciences, 2013.
- 43. Zubcova E., Toderash I., Zubcova N., Biletski L., Andreev N., Heavy metal accumulation in the main groups of hydrobionts of Middle Dniester and Dubasari reservoir. Scientific annals of the University "AI. I.Cuza" from Iași, Romania, 2002, p. 96-102
- 44. Zubcov Elena, Zubcov Natalia, The dynamics of the content and migration of trace metals in aquatic ecosystems of Moldova. E3S Web of Conferences 1, 32009 (2013) DOI: 10.1051/ e3sconf/ 20130132009, published by EDP Sciences, 2013.
- 45. Zubcov E., Zubcov N., Ene A., Biletchi L., Copper and zinc in fish from Prut River, Annals of the University Dunarea de Jos of Galati, Fascicle II - Mathematics, Physics, Theoretical Mechanics, Year I (XXXII) no.2, pp. 63-67,2009.
- 46. Zubcov Elena, Zubcov Natalia, Ene Antoaneta, Biletchi Lucia, Assessment of copper and zinc levels in fish from freshwater ecosystems of Moldova. Environmental Science and Pollution Research. Springer Verlag. Stuttgard. 19(6): 2238–2247, 2012.
- 47. Zubcov Natalia, The patterns of accumulation and role of trace elements in fish ontogenesis, Stiinta, Chisinau, 88 p. (in Russian), 2011.
- 48. Zubcov N., Zubcov E., Schlenk D., The dynamics of metals in fish from Dniester and Prut rivers. Transylvanian Review of Systematical and Ecological Research. Wetlands Biodiversity, nr.3, pp.51-58, 2008.